Python条形图热图直方图可视化精神健康状态(医学数据集)

本文主要是介绍Python条形图热图直方图可视化精神健康状态(医学数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目标是比开源精神疾病提供的基本报告更深入地挖掘,并了解更多属性之间的相互作用,这可以为所描述的决策者提供信息。

考虑的问题点:

  1. 不同性别属性的员工心理健康是否存在显着差异?
  2. 不同年龄属性的员工心理健康是否存在显着差异?
  3. 提供更多支持的公司是否会让员工心理更健康?
  4. 个人对心理健康的态度是否会影响他们的心理健康和寻求治疗?

数据可视化工具

条形图

条形图或条形图是用矩形条表示数据类别的图形,矩形条的长度和高度与其所表示的值成正比。 条形图可以水平或垂直绘制。 条形图描述了离散类别之间的比较。 该图的一个轴代表正在比较的特定类别,而另一个轴代表与这些类别相对应的测量值。

Python 中的 matplotlib API 提供了 bar() 函数,该函数可用于 MATLAB 风格或作为面向对象的 API。与轴一起使用的 bar() 函数的语法如下:

该函数根据给定的参数创建一个以矩形为边界的条形图。下面是一个简单的条形图示例,它代表一个学院不同课程的学生人数。

import numpy as np
import matplotlib.pyplot as plt # creating the dataset
data = {'C':20, 'C++':15, 'Java':30, 'Python':35}
courses = list(data.keys())
values = list(data.values())fig = plt.figure(figsize = (10, 5))# creating the bar plot
plt.bar(courses, values, color ='maroon', width = 0.4)plt.xlabel("Courses offered")
plt.ylabel("No. of students enrolled")
plt.title("Students enrolled in different courses")
plt.show()

这里plt.bar(courses, value, color=’maroon’)用于指定以courses列为X轴,values为Y轴来绘制条形图。 color 属性用于设置条形的颜色(本例中为栗色)。 plt.xlabel(“提供的课程”) 和 plt.ylabel(“学生已注册”) 用于标记相应的轴。 plt.title( ) 用于为 graph.plt.show() 创建标题,用于使用前面的命令将图形显示为输出。

自定义条形图

import pandas as pd
from matplotlib import pyplot as pltdata = pd.read_csv(r"cars.csv")
data.head()
df = pd.DataFrame(data)name = df['car'].head(12)
price = df['price'].head(12)fig = plt.figure(figsize =(10, 7))plt.bar(name[0:10], price[0:10])plt.show()

从上面的条形图中可以看出,X 轴刻度相互重叠,因此无法正确看到。这样通过旋转X轴刻度,就可以清晰可见。这就是为什么需要定制条形图。

import pandas as pd
from matplotlib import pyplot as pltdata = pd.read_csv(r"cars.csv")
data.head()
df = pd.DataFrame(data)name = df['car'].head(12)
price = df['price'].head(12)fig, ax = plt.subplots(figsize =(16, 9))ax.barh(name, price)for s in ['top', 'bottom', 'left', 'right']:ax.spines[s].set_visible(False)ax.xaxis.set_ticks_position('none')
ax.yaxis.set_ticks_position('none')ax.xaxis.set_tick_params(pad = 5)
ax.yaxis.set_tick_params(pad = 10)ax.grid(b = True, color ='grey',linestyle ='-.', linewidth = 0.5,alpha = 0.2)ax.invert_yaxis()for i in ax.patches:plt.text(i.get_width()+0.2, i.get_y()+0.5, str(round((i.get_width()), 2)),fontsize = 10, fontweight ='bold',color ='grey')ax.set_title('Sports car and their price in crore',loc ='left', )fig.text(0.9, 0.15, 'Jeeteshgavande30', fontsize = 12,color ='grey', ha ='right', va ='bottom',alpha = 0.7)plt.show()
多个条形图

当一个变量发生变化时要对数据集进行比较时,可以使用多个条形图。 我们可以轻松地将其转换为堆叠面积条形图,其中每个子组都显示在其他子组之上。 可以通过改变条形的厚度和位置来绘制它。 下面的条形图显示了工程分支通过的学生人数:

import numpy as np 
import matplotlib.pyplot as plt barWidth = 0.25
fig = plt.subplots(figsize =(12, 8)) IT = [12, 30, 1, 8, 22] 
ECE = [28, 6, 16, 5, 10] 
CSE = [29, 3, 24, 25, 17] br1 = np.arange(len(IT)) 
br2 = [x + barWidth for x in br1] 
br3 = [x + barWidth for x in br2] plt.bar(br1, IT, color ='r', width = barWidth, edgecolor ='grey', label ='IT') 
plt.bar(br2, ECE, color ='g', width = barWidth, edgecolor ='grey', label ='ECE') 
plt.bar(br3, CSE, color ='b', width = barWidth, edgecolor ='grey', label ='CSE') plt.xlabel('Branch', fontweight ='bold', fontsize = 15) 
plt.ylabel('Students passed', fontweight ='bold', fontsize = 15) 
plt.xticks([r + barWidth for r in range(len(IT))], ['2015', '2016', '2017', '2018', '2019'])plt.legend()
plt.show() 

堆叠条形图

堆叠条形图代表不同的组彼此重叠。 条形的高度取决于各组结果组合的高度。 它是从底部到值,而不是从零到值。 下面的条形图代表了团队中男孩和女孩的贡献。

import numpy as np
import matplotlib.pyplot as pltN = 5boys = (20, 35, 30, 35, 27)
girls = (25, 32, 34, 20, 25)
boyStd = (2, 3, 4, 1, 2)
girlStd = (3, 5, 2, 3, 3)
ind = np.arange(N) 
width = 0.35fig = plt.subplots(figsize =(10, 7))
p1 = plt.bar(ind, boys, width, yerr = boyStd)
p2 = plt.bar(ind, girls, width,bottom = boys, yerr = girlStd)plt.ylabel('Contribution')
plt.title('Contribution by the teams')
plt.xticks(ind, ('T1', 'T2', 'T3', 'T4', 'T5'))
plt.yticks(np.arange(0, 81, 10))
plt.legend((p1[0], p2[0]), ('boys', 'girls'))plt.show()

热图

直方图

医学数据集清理

医学数据集分析

参阅一:亚图跨际
参阅二:亚图跨际

这篇关于Python条形图热图直方图可视化精神健康状态(医学数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580844

相关文章

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

Python中@classmethod和@staticmethod的区别

《Python中@classmethod和@staticmethod的区别》本文主要介绍了Python中@classmethod和@staticmethod的区别,文中通过示例代码介绍的非常详细,对大... 目录1.@classmethod2.@staticmethod3.例子1.@classmethod

Python手搓邮件发送客户端

《Python手搓邮件发送客户端》这篇文章主要为大家详细介绍了如何使用Python手搓邮件发送客户端,支持发送邮件,附件,定时发送以及个性化邮件正文,感兴趣的可以了解下... 目录1. 简介2.主要功能2.1.邮件发送功能2.2.个性签名功能2.3.定时发送功能2. 4.附件管理2.5.配置加载功能2.6.