AQS 抽象队列同步器

2024-01-07 17:52
文章标签 队列 抽象 aqs 同步器

本文主要是介绍AQS 抽象队列同步器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AQS

AQS (抽象队列同步器): AbstractQueuedSynchronizer 是什么

  • 来自jdk1.5,是用来实现锁或者其他同步器组件的公共基础部分的抽象实现,是重量级基础框架以及JUC的基石,主要用于解决锁分配给谁的问题
  • 整体是通过一个抽象的FIFO队列来完成资源获取线程的排队工作,并通过一个int变量表示持有锁的状态
  • 锁是面向开发人员的,而同步器是JDK统一规范并简化了锁的实现,并抽象出来的公共基础部分,屏蔽了同步状态、同步队列的管理,和线程排队、通知、唤醒等机制

和AQS相关的类有:

  • ReentranLock
  • CountDownLatch
  • ReentrantReadWriteLock
  • Semaphore

在这里插入图片描述

AQS 原理

  • 整体是通过一个抽象的FIFO队列来完成资源获取线程的排队工作,并通过一个int变量表示持有锁的状态
  • 如果共享资源被占用,就需要阻塞唤醒机制来保证锁的分配,这个机制主要是通过CLH队列的变体实现的,将暂时获取锁失败的线程,以及自身的等待状态封装成队列的节点对象node,放入队列中
  • 通过CAS、自旋等维护共享资源的状态,达到并发效果
  • 内部结构:
    • 队列的 头指针、尾指针
    • int 类型的同步状态的标识 state ,默认值0代表没有被占用,大于等于1代表被占用
    • 内部类node,将暂时获取锁失败的线程,以及自身的等待状态封装成队列的节点对象node
      • int类型变量 waitStatus 当前节点再队列中的等待状态,默认为0
        • 1表示线程被取消
        • -1表示后继线程需要被唤醒
        • -2表示等待conditon唤醒
        • -3表示共享式(锁分为共享和独占)同步状态获取将无条件地传播下去
      • 前一个节点的指针和后一个节点的指针
      • 请求线程

CLH队列

  • (Craig, Landin,Hagersten) 三个科学家名字的简称
  • 通过state状态判断是否阻塞,从尾部入队,头部出队

以ReentrantLock为例,加锁和解锁的步骤为:

lock
  • 当调用 lock 方法加锁时

    • 非公平锁,会先尝试通过cas 比较并交换的操作把 states 的状态值从 0更新为1,如果更新成功,就把持有锁的线程设置为自己
    • 更新失败就和公平锁一样,执行 AQS 的 acquire方法
    • 除此之外,公平和非公平锁的区别就是,再获取同步状态时,公平锁需要判断等待队列中再自己之前是否存在有效节点,如果有公平锁就需要排队
    • 因为公平锁讲究先到先得,线程再获取锁时,如果这个锁的等待队列已经有线程再等待,当前线程就会直接进入等待队列
    • 而非公平锁,不管是否有队列,如果可以获取锁,就会立刻占有锁的对象,所以第一个在队列里排队的线程苏醒后,仍然需要去竞争锁,且不一定能竞争到锁

acquire 方法源码:

    public final void acquire(int arg) {if (!tryAcquire(arg) &&acquireQueued(addWaiter(Node.EXCLUSIVE), arg))selfInterrupt();}

acquire

  • 调用lock方法加锁,除非是非公平锁能直接拿到锁,其他情况下都是在调用acquire 方法
  • acquire 方法分为三种情况:
  • 调用 tryAcquire 方法尝试加锁;
    • AQS类的tryAcquire方法只是做了规范,方法内直接抛出异常,所以这个方法需要由子类去实现

    • 非公平锁的tryAcquire 方法会先判断锁的状态state是否为0,为0说明没有被其他线程占用,就立即使用cas操作变更state为1,变更成功就把持有锁的线程设置为自己,变更失败就表示加锁失败

    • 如果锁的状态为1,说明锁已经被占用,在比较当前线程和持有锁的线程是否一致,不一致就加锁失败

    • tryAcquire 方法公平和非公平锁的区别是

      • 再获取同步状态时,公平锁需要判断等待队列中再自己之前是否存在有效节点,如果有公平锁就需要排队
      • 非公平锁,不管是否有队列,如果可以获取锁,就会立刻占有锁的对象
    • 如果 tryAcquire 方法抢锁失败,就需要调用 addWaiter加入到等待队列

  • 加锁失败,调用 addWaite方法,进入等待队列;
    • acquire 方法的 addWaiter 方法创建的是独占的node节点,节点中封装的是当前线程
    • 首先要判断 链表的尾指针是否为空
      • 如果为空,就需要初始化链表,首先new一个空的哨兵节点,这个节点并不存储信息,只是作为占位使用,然后设置哨兵节点为头节点,然后把头节点赋值给尾节点
      • 当链表初始化完成后,或者链表中已经由其他节点时,就用CAS操作把新节点加入到链表尾部,如果节点加入链表失败就进行下一次循环,直到把节点加入成功为止
      • 如果不为空,直接用CAS操作把新节点加入到链表尾部,同样如果节点加入链表失败就进行循环,直到把节点加入成功为止
    • 节点成功入队后,需要调用acquireQueued 方法
  • 进入队列之后,调用acquireQueued 方法,线程进入阻塞状态,等待唤醒后才能继续执行
    • 首先获取当前节点的前置节点,如果前置节点是头节点,就尝试去获取锁
    • 如果获取锁成功,就把自己设为头节点,就把锁的state改为1,设置当前线程为持有锁的线程
    • 如果前置节点不是头节点,或者获取锁失败
      • 就需要判断前置节点的waitStatus状态值,waitStatus值默认为0,第一次进入循环,会把前置节点的waitStatus的值改为-1后,继续下一次循环后,会调用 LockSupport.park 方法阻塞当前线程,需要等待其他线程释放锁后,再唤醒阻塞的线程
      • 当持有锁的线程释放锁,且调用LockSupport.unpark 唤醒该线程后才能继续执行,LockSupport.unpark 唤醒的是头节点的下一个节点
      • 线程被唤醒后,检查线程是否被中断,如果线程没有被中断,就继续进行循环
      • 继续尝试去加锁,因为是非公平锁,所以有可能会加锁失败
        • 如果加锁成功,就把锁的state改为1,设置当前线程为持有锁的线程,并且把当前线程的节点设置为链表的头节点,原本的头节点会从链表中剔除
        • 因为每次唤醒的都是头节点的下一个节点,所以成功抢到到锁后,被唤醒的节点会成为新的头节点,后续会唤醒链表的下一个节点
    • 如果线程在等待过程中取消,没有获取到锁就跳出了循环,failed值为默认的true,就会执行cancelAcquire方法,取消正在排队的节点
      • 首先设置当前节点的线程为null,然后获取上一个没有取消的前置节点,
      • 把当前节点的 waitStatus 设置为1(1就是要取消的节点)
      • 如果当前节点是尾节点,就把上一个有效的节点设置为尾节点
      • 如果不是尾节点,并且满足出队条件,就变更链表中相关节点的前置和后置引用,剔除要取消的节点

非公平锁的 tryAcquire 方法源码

        final boolean nonfairTryAcquire(int acquires) {final Thread current = Thread.currentThread();int c = getState();//先判断锁的状态state是否为0,为0说明没有被其他线程占用if (c == 0) {//为0说明没有被其他线程占用,使用cas操作变更state为1if (compareAndSetState(0, acquires)) {//变更成功就把持有锁的线程设置为自己,变更失败就表示加锁失败setExclusiveOwnerThread(current);return true;}}//如果锁的状态为1,说明锁已经被占用,在比较当前线程和持有锁的线程是否一致else if (current == getExclusiveOwnerThread()) {int nextc = c + acquires;if (nextc < 0) // overflowthrow new Error("Maximum lock count exceeded");setState(nextc);return true;}//加锁失败return false;}

addWaiter(Node.EXCLUSIVE) 加入等待队列 源码:

  • Node.EXCLUSIVE 代表的是独占的节点,也就是排他锁
private Node addWaiter(Node mode) {//node节点中封装的是当前线程Node node = new Node(Thread.currentThread(), mode);//尾指针Node pred = tail;//链表的尾指针是否为空if (pred != null) {node.prev = pred;//如果加入失败,就会走下面的循环,直到把节点加入链表为止if (compareAndSetTail(pred, node)) {pred.next = node;return node;}}enq(node);return node;
}private Node enq(final Node node) {for (;;) {//尾节点Node t = tail;//如果尾节点为nullif (t == null) { // Must initialize//就需要new一个node节点,并且设置为头节点,然后把头节点赋值给尾节点if (compareAndSetHead(new Node()))tail = head;} else {//当链表初始化完成后,或者链表中已经由其他节点时//把要加入链表的新节点的前指针设置为尾节点node.prev = t;//并且把新加入的节点设置为尾节点if (compareAndSetTail(t, node)) {//设置成功就之前尾节点的后指针指向新节点,这样新节点就变成了新的尾节点,如果设置失败,就继续循环,直到把新节点加入到链表尾部为止t.next = node;return t;}}}}

acquireQueued 源码

  • 线程进入阻塞状态,等待唤醒后才能继续执行
	//arg为1,独占锁final boolean acquireQueued(final Node node, int arg) {boolean failed = true;try {boolean interrupted = false;for (;;) {//获得node节点的前置节点final Node p = node.predecessor();//node节点的前置节点是否为头节点,如果是就尝试去获取锁if (p == head && tryAcquire(arg)) {setHead(node);p.next = null; // help GCfailed = false;return interrupted;}//判断node节点的前置节点的waitStatus状态,默认情况下都是0,在第二次循环的时候,就会改成-1,然后执行parkAndCheckInterrupt方法//parkAndCheckInterrupt方法会阻塞当前线程//也就是后面的节点会把前面节点的 waitStatus 改为-1if (shouldParkAfterFailedAcquire(p, node) &&parkAndCheckInterrupt())interrupted = true;}} finally {if (failed)cancelAcquire(node);}}/*** waitStatus 当前节点再队列中的等待状态默认为01表示线程获取锁的请求被取消-1表示线程已经准备好了-2表示节点在等待队列中,等待唤醒-3表示共享式(锁分为共享和独占)同步状态获取将无条件地传播下去*/private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {//前置节点的状态int ws = pred.waitStatus;// SIGNAL= -1 , 当线程再次进行循环的时候,前一个节点的waitStatus已经被设置为-1,就返回trueif (ws == Node.SIGNAL)return true;//线程被取消if (ws > 0) {do {node.prev = pred = pred.prev;} while (pred.waitStatus > 0);pred.next = node;} else {//如果前置节点的 waitStatus不等于-1也不大于0,就把waitStatus的值改为-1后,返回falsecompareAndSetWaitStatus(pred, ws, Node.SIGNAL);}return false;}//阻塞当前线程private final boolean parkAndCheckInterrupt() {//验证当前线程的通行证,阻塞当前线程LockSupport.park(this);//被唤醒后,检查线程是否被中断,如果线程没有被中断,就返回 falsereturn Thread.interrupted();}

取消正在进行的获取尝试

	// node 为需要取消的节点private void cancelAcquire(Node node) {// Ignore if node doesn't existif (node == null)return;//设置当前节点的线程为nullnode.thread = null;//获取上一个节点Node pred = node.prev;//waitStatus > 0 ,表示上一个节点也要取消while (pred.waitStatus > 0)//那么就一直向上找,直到找到没有取消的前置节点node.prev = pred = pred.prev;//获取不会取消的前置节点的下一个节点Node predNext = pred.next;//把当前节点的 waitStatus 设置为1,1就是要取消的节点node.waitStatus = Node.CANCELLED;//如果当前节点是尾节点,就把上一个还有效的节点设置为尾节点if (node == tail && compareAndSetTail(node, pred)) {//设置成功,就把上一个节点的后置节点设置为null,这样上一个还有效的节点就成为了尾节点compareAndSetNext(pred, predNext, null);} else {//否则int ws;//前置节点不能是头节点,因为头节点只是占位节点,并且满足出队条件if (pred != head &&((ws = pred.waitStatus) == Node.SIGNAL ||(ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&pred.thread != null) {//变更链表中相关节点的前置和后置引用,剔除要取消的节点Node next = node.next;if (next != null && next.waitStatus <= 0)compareAndSetNext(pred, predNext, next);} else {unparkSuccessor(node);}node.next = node; // help GC}}
unlock

unlock 源码,其实是再调用release方法

    public void unlock() {sync.release(1);}

release方法会首先尝试释放锁

  • tryRelease 会把持有锁的线程为null,并且把锁的state设置为0
  • 如果链表被初始化过,有在等待的线程节点,头节点就不为空,且waitStatus值为-1
  • 接下来会把头节点的waitStatus的改为0,如果头节点的下一个节点不为null,就调用LockSupport.unpark 方法,唤醒头节点的下一个节点
    public final boolean release(int arg) {if (tryRelease(arg)) {Node h = head;if (h != null && h.waitStatus != 0)unparkSuccessor(h);return true;}return false;}

AQS的tryRelease方法,同样没有做实现,需要子类自己去实现,下面是ReentrantLock的实现

		protected final boolean tryRelease(int releases) {//传入的releases为1,持有锁的线程State为1,所以C为0int c = getState() - releases;//如果当前线程不等于持有锁的线程会抛出异常,这种情况一般不会出现if (Thread.currentThread() != getExclusiveOwnerThread())throw new IllegalMonitorStateException();boolean free = false;//c等于0,就设置持有锁的线程为null,并且把state设置为0,返回trueif (c == 0) {free = true;setExclusiveOwnerThread(null);}setState(c);return free;}

unparkSuccessor

    private void unparkSuccessor(Node node) {int ws = node.waitStatus;if (ws < 0)//重新把头节点的waitStatus值改为0compareAndSetWaitStatus(node, ws, 0);//头节点的下一个节点Node s = node.next;//如果链表被初始化过,有在等待的线程节点,头节点的后置节点就不为null//如果链表后面还有其他节点,那么头节点的后置节点waitStatus值就为-1if (s == null || s.waitStatus > 0) {s = null;for (Node t = tail; t != null && t != node; t = t.prev)if (t.waitStatus <= 0)s = t;}//如果头节点的下一个节点不为null,就直接调用 LockSupport.unpark 方法,唤醒头节点的下一个节点if (s != null)LockSupport.unpark(s.thread);}

这篇关于AQS 抽象队列同步器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/580761

相关文章

hdu1180(广搜+优先队列)

此题要求最少到达目标点T的最短时间,所以我选择了广度优先搜索,并且要用到优先队列。 另外此题注意点较多,比如说可以在某个点停留,我wa了好多两次,就是因为忽略了这一点,然后参考了大神的思想,然后经过反复修改才AC的 这是我的代码 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<

poj 3190 优先队列+贪心

题意: 有n头牛,分别给他们挤奶的时间。 然后每头牛挤奶的时候都要在一个stall里面,并且每个stall每次只能占用一头牛。 问最少需要多少个stall,并输出每头牛所在的stall。 e.g 样例: INPUT: 51 102 43 65 84 7 OUTPUT: 412324 HINT: Explanation of the s

poj 2431 poj 3253 优先队列的运用

poj 2431: 题意: 一条路起点为0, 终点为l。 卡车初始时在0点,并且有p升油,假设油箱无限大。 给n个加油站,每个加油站距离终点 l 距离为 x[i],可以加的油量为fuel[i]。 问最少加几次油可以到达终点,若不能到达,输出-1。 解析: 《挑战程序设计竞赛》: “在卡车开往终点的途中,只有在加油站才可以加油。但是,如果认为“在到达加油站i时,就获得了一

poj3750约瑟夫环,循环队列

Description 有N个小孩围成一圈,给他们从1开始依次编号,现指定从第W个开始报数,报到第S个时,该小孩出列,然后从下一个小孩开始报数,仍是报到S个出列,如此重复下去,直到所有的小孩都出列(总人数不足S个时将循环报数),求小孩出列的顺序。 Input 第一行输入小孩的人数N(N<=64) 接下来每行输入一个小孩的名字(人名不超过15个字符) 最后一行输入W,S (W < N),用

POJ2010 贪心优先队列

c头牛,需要选n头(奇数);学校总共有f的资金, 每头牛分数score和学费cost,问合法招生方案中,中间分数(即排名第(n+1)/2)最高的是多少。 n头牛按照先score后cost从小到大排序; 枚举中间score的牛,  预处理左边与右边的最小花费和。 预处理直接优先队列贪心 public class Main {public static voi

Java并发编程之——BlockingQueue(队列)

一、什么是BlockingQueue BlockingQueue即阻塞队列,从阻塞这个词可以看出,在某些情况下对阻塞队列的访问可能会造成阻塞。被阻塞的情况主要有如下两种: 1. 当队列满了的时候进行入队列操作2. 当队列空了的时候进行出队列操作123 因此,当一个线程试图对一个已经满了的队列进行入队列操作时,它将会被阻塞,除非有另一个线程做了出队列操作;同样,当一个线程试图对一个空

FreeRTOS学习笔记(六)队列

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、队列的基本内容1.1 队列的引入1.2 FreeRTOS 队列的功能与作用1.3 队列的结构体1.4 队列的使用流程 二、相关API详解2.1 xQueueCreate2.2 xQueueSend2.3 xQueueReceive2.4 xQueueSendFromISR2.5 xQueueRecei

多线程篇(阻塞队列- LinkedBlockingDeque)(持续更新迭代)

目录 一、LinkedBlockingDeque是什么 二、核心属性详解 三、核心方法详解 addFirst(E e) offerFirst(E e) putFirst(E e) removeFirst() pollFirst() takeFirst() 其他 四、总结 一、LinkedBlockingDeque是什么 首先queue是一种数据结构,一个集合中

工厂方法模式和抽象工厂模式的区别

区别  工厂方法模式: 一个抽象产品类,可以派生出多个具体产品类。    一个抽象工厂类,可以派生出多个具体工厂类。    每个具体工厂类只能创建一个具体产品类的实例。 抽象工厂模式: 多个抽象产品类,每个抽象产品类可以派生出多个具体产品类。    一个抽象工厂类,可以派生出多个具体工厂类。    每个具体工厂类可以创建多个具体产品类的实例。    区别: 工厂方法模式只有一个抽象产品类

Java消息队列:RabbitMQ与Kafka的集成与应用

Java消息队列:RabbitMQ与Kafka的集成与应用 大家好,我是微赚淘客返利系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿! 在现代的分布式系统中,消息队列是实现系统间通信、解耦和提高可扩展性的重要组件。RabbitMQ和Kafka是两个广泛使用的消息队列系统,它们各有特点和优势。本文将介绍如何在Java应用中集成RabbitMQ和Kafka,并展示它们的应用场景。 消息队