第 5 章 Nova - 028 - nova-compute 部署 instance 详解

2024-01-07 06:30

本文主要是介绍第 5 章 Nova - 028 - nova-compute 部署 instance 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

nova-compute

 

nova-compute 在计算节点上运行,负责管理节点上的 instance。

OpenStack 对 instance 的操作,最后都是交给 nova-compute 来完成的。

nova-compute 与 Hypervisor 一起实现 OpenStack 对 instance 生命周期的管理。

 

通过 Driver 架构支持多种 Hypervisor

 

nova-compute 为这些 Hypervisor 定义了统一的接口,Hypervisor 只需要实现这些接口,就可以 Driver 的形式即插即用到 OpenStack 系统中。

 

下面是Nova Driver的架构示意图:

 

我们可以在 /opt/stack/nova/nova/virt/ 目录下查看到 OpenStack 源代码中已经自带了上面这几个 Hypervisor 的 Driver

 

某个特定的计算节点上只会运行一种 Hypervisor,只需在该节点 nova-compute 的配置文件 /etc/nova/nova.conf 中配置所对应的 compute_driver 就可以了。

在我们的环境中因为是 KVM,所以配置的是 Libvirt 的 driver。

compute_driver = libvirt.LibvirtDriver

 

nova-compute 的功能可以分为两类:

1、定时向 OpenStack 报告计算节点的状态

2、实现 instance 生命周期的管理

 

定期向 OpenStack 报告计算节点的状态

nova-scheduler 的很多 Filter 是根据算节点的资源使用情况进行过滤的。

比如 RamFilter 要检查计算节点当前可以的内存量;

CoreFilter 检查可用的 vCPU 数量;

DiskFilter 则会检查可用的磁盘空间。

 

nova-compute 会把计算节点的信息定期上报给 OpenStack 。

从 nova-compute 的日志 /opt/stack/logs/n-cpu.log 可以发现: 每隔一段时间,nova-compute 就会报告当前计算节点的资源使用情况和 nova-compute 服务状态。

 

nova-compute 可以通过 Hypervisor 的 driver 获取当前节点上所有 instance 的资源占用信息。

举例来说:

在实验环境下 Hypervisor 是 KVM,用的 Driver 是 LibvirtDriver。

LibvirtDriver 可以调用相关的 API 获得资源信息,这些 API 的作用相当于在 CLI 里执行 virsh nodeinfo、virsh dominfo 等命令。

 

 

实现 instance 生命周期的管理

OpenStack 对 instance 最主要的操作都是通过 nova-compute 实现的,包括 instance 的 launch、shutdown、reboot、suspend、resume、terminate、resize、migration、snapshot 等。

 

当 nova-scheduler 选定了部署 instance 的计算节点后,会通过消息中间件 rabbitMQ 向选定的计算节点发出 launch instance 的命令。

该计算节点上运行的 nova-compute 收到消息后会执行 instance 创建操作。

日志 /opt/stack/logs/n-cpu.log 记录了整个操作过程。

 

nova-compute 创建 instance 的过程可以分为 4 步:

1、为 instance 准备资源

2、创建 instance 的镜像文件

3、创建 instance 的 XML 定义文件

4、创建虚拟网络并启动虚拟机

 

1、为 instance 准备资源

nova-compute 首先会根据指定的 flavor 依次为 instance 分配内存、磁盘空间和 vCPU。

可以在日志中看到这些细节

 

网络资源也会提前分配。

 

 

2、创建 instance 的镜像文件

资源准备好之后,nova-compute 会为 instance 创建镜像文件。

OpenStack 启动一个 instance 时,会选择一个 image,这个 image 由 Glance 管理。 nova-compute会:

1、首先将该 image 下载到计算节点

2、然后将其作为 backing file 创建 instance 的镜像文件

 

从 Glance 下载 image

 

nova-compute 首先会检查 image 是否已经下载(比如之前已经创建过基于相同 image 的 instance)。

如果没有,就从 Glance 下载 image 到本地。

由此可知,如果计算节点上要运行多个相同 image 的 instance,只会在启动第一个 instance 的时候从 Glance 下载 image,后面的 instance 启动速度就大大加快了。

日志如下:

 

可以看到:

1、image(ID为 917d60ef-f663-4e2d-b85b-e4511bb56bc2)是 qcow2 格式,nova-compute 将其下载。

Nova 默认会通过 qemu-img 转换成 raw 格式,以提高 IO 性能。

2、image 的存放目录是 /opt/stack/data/nova/instances/_base,这是由 /etc/nova/nova.conf 的下面两个配置选项决定的。

instances_path = /opt/stack/data/nova/instances

base_dir_name = _base

3、下载的 image 文件被命名为 60bba5916c6c90ed2ef7d3263de8f653111dd35f,这是 image id 的 SHA1 哈希值。

 

 

3、为 instance 创建镜像文件

有了 image 之后,instance 的镜像文件直接通过 qemu-img 命令创建,backing file 就是下载的 image。

 

这里 instance 的镜像文件位于 /opt/stack/data/glance/images/7ad5f8e3-40bd-41d0-8393-da393a7b61ab,格式为 qcow2,其中 7ad5f8e3-40bd-41d0-8393-da393a7b61ab 就是 instance 的 id。

可以通过 qume-img info 查看 disk 文件的属性

 

 

这两个容易搞混淆:

1、image,指的是 Glance 上保存的镜像,作为 instance 运行的模板。

计算节点将下载的 image 存放在 /opt/stack/data/glance/images 目录下。

2、镜像文件,指的是 instance 启动盘所对应的文件

3、二者的关系是:image 是镜像文件 的 backing file。

image 不会变,而镜像文件会发生变化。

比如安装新的软件后,镜像文件会变大。

 

因为英文中两者都叫 “image”,为避免混淆,这里用 “image” 和 “镜像文件” 作区分。

 

 

3、创建 instance 的 XML 定义文件

 

创建的 XML 文件会保存到该 instance 目录 /opt/stack/data/nova/instances/f1e22596-6844-4d7a-84a3-e41e6d7618ef,命名为 libvirt.xml

 

 

4、创建虚拟网络并启动 instance

接下来便是为 instance 创建虚拟网络设备

 

linux-bridge 来实现的虚拟网络,一切就绪,接下来可以启动 instance 了。

 

至此,instance 已经成功启动。

OpenStack 图形界面和 KVM CLI 都可以查看到 instance 的运行状态。

 

 

在计算节点上,instance 并不是以 OpenStack上的名字命名,而是采用 instance-xxxxx 的格式。

 

----------------------------------------------引用来自--------------------------------------------------

https://www.cnblogs.com/CloudMan6/p/5451276.html

https://mp.weixin.qq.com/s?__biz=MzIwMTM5MjUwMg==&mid=2653587838&idx=1&sn=d9086010c7c1b6d2cf7bb5668dae6e00&chksm=8d308167ba47087114eeeac94add3dc9f642501fd22975b57fb193c92bd0b303375a046fff37&scene=21#wechat_redirect

转载于:https://www.cnblogs.com/gsophy/p/11004414.html

这篇关于第 5 章 Nova - 028 - nova-compute 部署 instance 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578998

相关文章

一文详解如何从零构建Spring Boot Starter并实现整合

《一文详解如何从零构建SpringBootStarter并实现整合》SpringBoot是一个开源的Java基础框架,用于创建独立、生产级的基于Spring框架的应用程序,:本文主要介绍如何从... 目录一、Spring Boot Starter的核心价值二、Starter项目创建全流程2.1 项目初始化(

Spring Boot3虚拟线程的使用步骤详解

《SpringBoot3虚拟线程的使用步骤详解》虚拟线程是Java19中引入的一个新特性,旨在通过简化线程管理来提升应用程序的并发性能,:本文主要介绍SpringBoot3虚拟线程的使用步骤,... 目录问题根源分析解决方案验证验证实验实验1:未启用keep-alive实验2:启用keep-alive扩展建

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

SpringBoot配置Ollama实现本地部署DeepSeek

《SpringBoot配置Ollama实现本地部署DeepSeek》本文主要介绍了在本地环境中使用Ollama配置DeepSeek模型,并在IntelliJIDEA中创建一个Sprin... 目录前言详细步骤一、本地配置DeepSeek二、SpringBoot项目调用本地DeepSeek前言随着人工智能技

Java异常架构Exception(异常)详解

《Java异常架构Exception(异常)详解》:本文主要介绍Java异常架构Exception(异常),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. Exception 类的概述Exception的分类2. 受检异常(Checked Exception)

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

SpringBoot使用OkHttp完成高效网络请求详解

《SpringBoot使用OkHttp完成高效网络请求详解》OkHttp是一个高效的HTTP客户端,支持同步和异步请求,且具备自动处理cookie、缓存和连接池等高级功能,下面我们来看看SpringB... 目录一、OkHttp 简介二、在 Spring Boot 中集成 OkHttp三、封装 OkHttp

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda