本文主要是介绍SiC电机控制器(逆变器)发展概况及技术方向,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
SiC电机控制器(逆变器)发展概况及技术方向
- 1.概述
- 2.电动汽车动力系统设计趋势
- 3.栅极驱动器和驱动电源配置
- 4.结论
tips:资料来自网上搜集,仅供学习使用。
1.概述
2022年到2023年,第三代半导体碳化硅被推上了新的热潮。我们都知道只要是半导体行业,必定会引起世界瞩目。今天我们以汽车行业为例主要了解碳化硅平台的优势和技术路线。
2.电动汽车动力系统设计趋势
高压,高速
电机控制器负责将电池能量转换为控制扭矩和速度所需的功率,因此是影响电动汽车续航里程、性能和驾驶体验的最大因素。扭矩与电机尺寸成比例,而功率提供扭矩和速度。在保持功率恒定的情况下,如果想要缩小电机尺寸和扭矩,则需要增加速度。这是个挑战,因为元件尺寸通常随着功率水平和扭矩增加而增加,尤其是存在因机械或电气非理想因素而造成损耗等设计效率低下问题时。因此,不仅要缩小电机的尺寸,还要缩小牵引逆变器本身的电气系统尺寸,这一点变得很重要。
为了延长续航里程、缩小电机尺寸并降低重量,但又不能降低功率水平,牵引电机需要能够以更高的速度 (>30,000rpm) 转动。这需要快速感测和处理能力,以及高效的直流到交流电压转换。为了实现这些目标,牵引逆变器设计趋势包括使用高级控制算法、采用 SiC MOSFET 作为功率级中的开关晶体管、使用 800V 高压电池,以及集成多个子系统来获得高功率密度。
电流快速检测
控制环路是感测电流从牵引逆变器各相流回隔离式精密放大器并流过微控制器 (MCU) 以进行处理的路径。此路径最终会让信号返回到牵引逆变器的控制输出。通过优化电机控制环路可以实现快速准确的反馈,这样一来,电机便可以快速响应速度或扭矩变化。图 1 中高亮显示的部分展示了电机控制环路。
牵引逆变器中的电源和控制电流之间通常由隔离式半导体元件隔离。三个隔离式放大器或调制器通过分流电阻器测量电机电流,然后将信号馈入 MCU 的场定向控制 (FOC) 算法。若要提升电机速度,就需要更高带宽的电流感测反馈环路,这就意味着同相电流必须尽快生成经修改的逆变器输出。电流感测反馈环路的延迟是一项首要考虑因素,尤其是因为功率晶体管开关频率(图) 中的绝缘栅双极晶体管 [IGBT]/SiC MOSFET)增加到数十千赫兹,并且控制信号必须逐周期改变脉冲宽度,以实现较高的转速。大电流产生的噪声还会影响环路可靠性。
要想提升反馈速度和系统靠靠性,Ti提出了一系列方案可供参考:《牵引逆变器 – 汽车电气化的推动力》
3.栅极驱动器和驱动电源配置
由 MCU 和电流感测环路生成的控制信号会馈入功率级,而功率级是电池和电机之间的纽带。功率级包括一个高压直流总线,该总线通过一个与 IGBT 或 SiC MOSFET 等功率晶体管的三个相位相连的大电容器组去耦。功率级应该在将直流电压转换为交流时具有极小的功率损耗,并且尺寸较小,以便高效地使用电池,进而延长汽车的续航里程。然而,这是个挑战,因为电压和功率越高,元件的尺
寸自然就越大。幸运的是,随着相关技术的不断突破,以相同元件尺寸提供更高的功率水平成为可能。
影响牵引逆变器尺寸的因素有以下两个:高电压晶体管的类型,以及电池的电压电平。与具有相同额定电压的 IGBT 相比,SiC MOSFET 具有更低的开关损耗和更小的裸片尺寸,因此一些工程师会在牵引逆变器设计中采用 SiC MOSFET。当 SiC 晶体管受到妥善控制时,在逆变器的所有工作条件(例如温度、速度和扭矩)下,它们的损耗更低,可靠性更高,因此能够延长行驶里程。
虽然 SiC MOSFET 更高效,但是就像任何其他晶体管一样,它们在开关时会产生一些功率损耗,而这些功率损耗会影响牵引逆变器的效率。在开关瞬变期间,电压和电流边沿会重叠并产生功率损耗,如图 所示。高栅极驱动器输出电流可以对 SiC FET 栅极进行快速充放电,从而实现较低的功率损耗。然而,开关行为会在温度、电流和电压范围内发生变化,因此以尽可能快的速度进行开关并非尽
如人意。SiC FET 上电压的快速转换(称为漏源电压 (VDS) 的瞬态电压 (dv/dt))会以传导接地电流形式产生电压过冲和电磁干扰 (EMI)。鉴于绕组间的电容可能发生短路,电机本身会受到高 dv/dt 的影响。栅极驱动器电路可以控制功率损耗和开关瞬态。
通过使用栅极电阻来控制栅极驱动器的输出拉电流和灌电流,有助于优化 dv/dt 和功率损耗之间的权衡。图展示了一种栅极驱动器实现,该实现具有可调输出驱动强度来针对温度和电流范围内的 SiC MOSFET 压摆率变化进行优化。
可调节功能对牵引逆变器性能有利,因为它能够实现更低的 EMI 和更低的损耗,进而提高效率来帮助延长行驶里程。TI 的 UCC5870-Q1 和 UCC5871-Q1 栅极驱动器具有 30A 驱动强度,因此可以非常方便地基于更改和优化栅极电阻来实现可调栅极驱动解决方案。此外,它们具有电隔离和 100kV/µs CMTI,因此可以在采用快速开关 SiC 技术的高压应用中轻松地使用。
电池的电压电平也会影响系统中存在的 dv/dt 大小,当设计人员需要最大限度地降低 EMI,并且所选元件需要满足各项隔离安全标准并保持相同的功率密度和面积时,这也会带来挑战。SiC MOSFET 以较小的裸片尺寸支持超过 1,200V 的高击穿电压,这可以为 800V 电动汽车电池应用打造高功率密度解决方案。
当电源需要具有隔离能力和良好的调节能力时,支持高电压 SiC MOSFET 的栅极电压要求变得非常具有挑战性。从 SiC MOSFET 的电流电压特征曲线中可以清楚地看到栅极电压带来的影响,如图 所示,其中栅源电压 (VGS) 越高会导致线性区域的曲线斜率越大。曲线斜率较大意味着应减小漏源导通电阻 (RDS(on)),以最大限度地减少导通损耗并避免热失控。
为栅极驱动器提供电源和电压的隔离式偏置电源应当在快速瞬变期间保持适当的正栅极电压,并能够支持负电压来保持 SiC FET 安全关断。隔离式电源通常采用集成半导体开关控制器的变压器来生成。不过,从电气效率和 EMI 的角度而言,变压器的复杂设计会直接影响功率级的性能。绕组间电容会导致共模电流增加,而共模电流又会导致产生 EMI,因此该电容越小越好,但需要在尺寸、额定电压
和效率之间进行权衡,因而需要花更多的时间来设计。
借助 UCC14241-Q1 和 UCC1420-Q1 等集成式电源模块,初级到次级隔离电容可以被很好地控制在 3.5pF 以下,从而使得快速开关 SiC MOSFET 的 CMTI 大于
150V/ns。HEV/EV 子系统设计逐渐朝着进一步集成的方向发展,例如将牵引逆变器与直流/直流转换器结合使用。与采用反激式转换器的典型偏置电源解决方案相比,UCC14241-Q1 可以让物料清单 (BOM) 面积缩减约 40%,如图 所示。其高度要比分立式变压器设计低得多,因此重心更低,振动耐受度更高。所有这些因素都有助于提高牵引逆变器系统的可靠性和延长使用寿命,同时能够提供正确的电压来高效地驱动功率晶体管。
4.结论
电动汽车正在推动从处理到功率半导体领域的全面技术创新。电机控制和动力总成设计直接影响电动汽车的续航里程和驾驶性能。高精度电流传感器与具有实时控制功能的智能 MCU 相结合,有助于降低延迟并提升电机控制环路的精度,从而实现平稳的速度和扭矩转变。由于谐波失真降低,电气效率和续航里程得到改善;电机振动也一样有所改善,从而有助于防止不舒服的驾驶体验。
通过采用 SiC MOSFET 和 800V 技术实现了出色的牵引逆变器功率密度和效率,从而支持集成各种动力总成功能,最终使得每次充电后具有更长的行驶里程。TI 广泛的集成式半导体技术产品系列让汽车制造商和一级供应商能够灵活地实现高性能和低成本。
通过近期小米汽车的发布会可以看出,800V电驱已经成为主流产品,碳化硅市场将会越来越成熟。
这篇关于SiC电机控制器(逆变器)发展概况及技术方向的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!