详细平稳解

2024-01-07 00:12
文章标签 详细 平稳

本文主要是介绍详细平稳解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.详细平衡

定义:一个在高斯白噪声激励下的动力学系统在状态空间中如果用如下运动方程描述:
d d t X j \frac{d}{dt}\mathbf{X}_{j} dtdXj= f j ( X ) f_{j}(\mathbf{X}) fj(X)+ ∑ l = 1 m g j l ( X ) W l ( t ) \sum_{l=1}^{m}g_{jl}(\mathbf{X})W_{l}(t) l=1mgjl(X)Wl(t),j=1,2,…n
它一般不属于平稳势类。为满足FPK方程,可将一阶导数矩分成如下两个部分:
a j ( x ) = a j R ( x ) + a j I ( x ) a_{j}(\mathbf{x})=a_{j}^{R}(\mathbf{x})+a_{j}^{I}(\mathbf{x}) aj(x)=ajR(x)+ajI(x)
其中, a j R ( x ) a_{j}^{R}(\mathbf{x}) ajR(x)为可逆分量, a j I ( x ) a_{j}^{I}(\mathbf{x}) ajI(x)为不可逆分量。不可逆部分和阻尼力相应,可逆部分与惯性力和恢复力相应 (对于拉格朗日提法和哈密顿提法也是如此)

补充:维纳过程和高斯白噪声之间的关系

考虑方程 d X ( t ) d t = W ( t ) , X ( 0 ) = 0 \frac{dX(t)}{dt}=W(t),X(0)=0 dtdX(t)=W(t),X(0)=0其中, W ( t ) W(t) W(t)是谱密度为 K K K的高斯白噪声,即 E [ W ( t ) ] = 0 , E [ W ( t ) W ( t + τ ) ] = 2 π K δ ( τ ) . E[W(t)]=0,E[W(t)W(t+\tau)]=2\pi K\delta(\tau). E[W(t)]=0E[W(t)W(t+τ)]=2π(τ).
按维纳过程的定义, X ( t ) X(t) X(t)是维纳过程,则 d B ( t ) d t = W ( t ) . ( ∗ ) \frac{dB(t)}{dt}=W(t).(*) dtdB(t)=W(t).()而维纳过程的强度 σ 2 \sigma^{2} σ2与高斯白噪声的谱密度之间的关系为 σ 2 = 2 π K . \sigma^{2}=2\pi K. σ2=2πK.
这里的(*)式只是一种形式上的关系,因为维纳过程 B ( t ) B(t) B(t) L 2 L_{2} L2意义上不可微。
作为最简单的马尔可夫扩散过程,维纳过程 B ( t ) B(t) B(t)可以通过随机微分方程用于构造其他马尔可夫过程,一个标量马尔可夫扩散过程可由下式产生: d X ( t ) = m ( X , t ) d t + σ ( X , t ) d B ( t ) dX(t)=m(X,t)dt+\sigma(X,t)dB(t) dX(t)=m(X,t)dt+σ(X,t)dB(t),其中 B ( t ) B(t) B(t)是单位维纳过程,即
E [ B ( t 1 ) B ( t 2 ) ] = m i n ( t 1 , t 2 ) , E [ d B ( t 1 ) d B ( t 2 ) ] = { 0 , t 1 ≠ t 2 d t , t 1 = t 2 = t E[B(t_{1})B(t_{2})]=min(t_{1},t_{2}),E[dB(t_{1})dB(t_{2})]=\left\{\begin{matrix} 0, &t_{1}\neq t_{2} \\ dt, &t_{1}=t_{2}=t \end{matrix}\right. E[B(t1)B(t2)]=min(t1,t2),E[dB(t1)dB(t2)]={0,dt,t1=t2t1=t2=t

2.以下举例说明:

2.1外激单自由度系统

考虑系统 X ¨ + h ( Λ ) X ˙ + u ( X ) = W ( t ) \mathbf{\ddot{X} }+h(\Lambda)\mathbf{\dot{X}}+u(\mathbf{X})=W(t) X¨+h(Λ)X˙+u(X)=W(t),式中 u ( X ) u(\mathbf{X}) u(X)是恢复力, W ( t ) W(t) W(t)是谱密度为 K K K的高斯白噪声, Λ \Lambda Λ是系统的总能量,也就是 Λ = 1 2 X ˙ 2 + ∫ 0 X u ( z ) d z . \Lambda=\frac{1}{2}\mathbf{\dot{X}}^{2}+ \int_{0}^{X}u(z)dz. Λ=21X˙2+0Xu(z)dz.
自然地,我们可以知道阻尼力为 X ˙ \mathbf{\dot{X}} X˙对应部分,惯性力和恢复力为 u ( X ) u(\mathbf{X}) u(X)

首先,我们得到系统对应的伊藤方程(令 X 1 = X \mathbf{X_{1}}=\mathbf{X} X1=X X 2 = X ˙ \mathbf{X_{2}}=\mathbf{\dot{X}} X2=X˙):
d X 1 = X 2 d t d X 2 = − [ h ( Λ ) X 2 + u ( X 1 ) ] d t + 2 π K d B ( t ) . d\mathbf{X_{1}}=\mathbf{X_{2}}dt\\ d\mathbf{X_{2}}=-[h(\Lambda)\mathbf{X_{2}}+u(\mathbf{X_{1}})]dt+\sqrt{2\pi K}dB(t). dX1=X2dtdX2=[h(Λ)X2+u(X1)]dt+2πK dB(t).
对于这里 d B ( t ) = W ( t ) d t dB(t)=W(t)dt dB(t)=W(t)dt,由于把普通随机微分方程转化成了伊藤随机微分方程,故按对于的规则,得到上式; σ ( X , t ) d B ( t ) = 2 π K d B ( t ) \sigma(X,t)dB(t)=\sqrt{2\pi K}dB(t) σ(X,t)dB(t)=2πK dB(t).

由此得到一、二阶导数矩:
a 1 = x 2 , a 2 = − h ( λ ) x 2 − u ( x 1 ) , b 11 = b 12 = b 21 = 0 , b 22 = 2 π K a_{1}=x_{2},a_{2}=-h(\lambda)x_{2}-u(x_{1}),b_{11}=b_{12}=b_{21}=0,b_{22}=2\pi K a1=x2,a2=h(λ)x2u(x1),b11=b12=b21=0,b22=2πK
其中可逆部分:
a 1 R = x 2 , a 2 R = − u ( x 1 ) a_{1}^{R}=x_{2},a_{2}^{R}=-u(x_{1}) a1R=x2,a2R=u(x1)
不可逆部分:
a 1 I = 0 , a 2 I = − h ( λ ) x 2 a_{1}^{I}=0,a_{2}^{I}=-h(\lambda)x_{2} a1I=0,a2I=h(λ)x2
将上式带入 a j I = 1 2 ∑ k = 1 n [ ∂ ∂ x k b j k ( x ) − b j k ( x ) ∂ ϕ ∂ x k ] , ∑ j = 1 n ∂ ∂ x j a j R ( x ) = ∑ j = 1 n a j R ( x ) ∂ ϕ ∂ x j . a_{j}^{I}=\frac{1}{2}\sum_{k=1}^{n}[\frac{\partial }{\partial x_{k}}b_{jk}(x)-b_{jk}(x)\frac{\partial \phi}{\partial x_{k}}],\\ \sum_{j=1}^{n}\frac{\partial }{\partial x_{j}}a_{j}^{R}(x)=\sum_{j=1}^{n}a_{j}^{R}(x)\frac{\partial \phi}{\partial x_{j}}. ajI=21k=1n[xkbjk(x)bjk(x)xkϕ],j=1nxjajR(x)=j=1najR(x)xjϕ.
(若系统属于详细平衡类,则存在一个 ϕ ( x ) \phi(x) ϕ(x)满足所有这些方程。)
得到, π K ∂ ϕ ∂ x 2 = − h ( λ ) x 2 , ( 1 ) x 2 ∂ ϕ ∂ x 1 = u ( x 1 ) ∂ ϕ ∂ x 2 . ( 2 ) \pi K \frac{\partial\phi}{\partial x_{2}}=-h(\lambda)x_{2},(1)\\ x_{2}\frac{\partial\phi}{\partial x_{1}}=u(x_{1})\frac{\partial \phi}{\partial x_{2}}.(2) πKx2ϕ=h(λ)x2,(1)x2x1ϕ=u(x1)x2ϕ.(2)
解(1)式:
请添加图片描述
带入(2)式,发现 g ( x 1 ) g(x_{1}) g(x1)必为常数,又对于一个系统属于平稳势类则其平稳概率密度表示为: p ( x ) = C e x p [ − ϕ ( x ) ] p(x)=Cexp[-\phi(x)] p(x)=Cexp[ϕ(x)]其中,C为归一化常数,于是
p ( x 1 , x 2 ) = C e x p [ − 1 π K ∫ 0 λ h ( z ) d z ] , λ = 1 2 x 2 2 + ∫ 0 x 1 u ( z ) d z . p(x_{1},x_{2})=Cexp[-\frac{1}{\pi K}\int_{0}^{\lambda} h(z)dz],\lambda=\frac{1}{2}x_{2}^{2}+\int_{0}^{x_{1}}u(z)dz. p(x1,x2)=Cexp[πK10λh(z)dz],λ=21x22+0x1u(z)dz.

故对于受外激作用的单自由度系统属于详细平衡类.
特别地,对于线性阻尼力情形: h ( Λ ) X ˙ = α X ˙ h(\Lambda)\dot{X}=\alpha \dot{X} h(Λ)X˙=αX˙, p ( x 1 , x 2 ) = C e x p { − α π K [ ∫ 0 x 1 u ( z ) d z + 1 2 x 2 2 ] } . p(x_{1},x_{2})=Cexp\{-\frac{\alpha}{\pi K}[\int_{0}^{x_{1}}u(z)dz+\frac{1}{2}x_{2}^{2}]\}. p(x1,x2)=Cexp{πKα[0x1u(z)dz+21x22]}.

2.2同受外激和参激的单自由度系统

补充:外激(施加在系统上的外力或外部扰动)参激(系统内部的反馈信号或参数输入)
X ¨ + ( α + β X 2 ) X ˙ + ω 0 2 X = X W 1 ( t ) + W 2 ( t ) \ddot{X}+(\alpha+\beta X^{2})\dot{X}+\omega_{0}^{2}X=XW_{1}(t)+W_{2}(t) X¨+(α+βX2)X˙+ω02X=XW1(t)+W2(t)
其中 W 1 ( t ) W_{1}(t) W1(t) W 2 ( t ) W_{2}(t) W2(t)是谱密度分别为 K 11 K_{11} K11 K 22 K_{22} K22的独立高斯白噪声,以 X 1 X_{1} X1 X X X X 2 X_{2} X2 X ˙ \dot{X} X˙,则对于的伊藤方程:
d X 1 = X 2 d t d X 2 = − [ ( α + β X 1 2 ) X 2 + ω 0 2 X 1 ] d t + 2 π ( K 11 X 1 2 + K 22 ) d B ( t ) dX_{1}=X_{2}dt\\ dX_{2}=-[(\alpha+\beta X_{1}^{2})X_{2}+\omega_{0}^{2}X_{1}]dt+\sqrt{2 \pi (K_{11}X_{1}^{2}+K_{22})}dB(t) dX1=X2dtdX2=[(α+βX12)X2+ω02X1]dt+2π(K11X12+K22) dB(t)

请添加图片描述
请添加图片描述

可以看到这里系统属于详细平衡解需要满足 α β = K 22 K 11 \frac{\alpha}{\beta}=\frac{K_{22}}{K_{11}} βα=K11K22

ps:可能会补充更新,仅供自己学习使用,对于其他形式的系统可作类似推导,都是书中原例。

这篇关于详细平稳解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/578096

相关文章

C++ vector的常见用法超详细讲解

《C++vector的常见用法超详细讲解》:本文主要介绍C++vector的常见用法,包括C++中vector容器的定义、初始化方法、访问元素、常用函数及其时间复杂度,通过代码介绍的非常详细,... 目录1、vector的定义2、vector常用初始化方法1、使编程用花括号直接赋值2、使用圆括号赋值3、ve

python连接本地SQL server详细图文教程

《python连接本地SQLserver详细图文教程》在数据分析领域,经常需要从数据库中获取数据进行分析和处理,下面:本文主要介绍python连接本地SQLserver的相关资料,文中通过代码... 目录一.设置本地账号1.新建用户2.开启双重验证3,开启TCP/IP本地服务二js.python连接实例1.

Nginx中配置HTTP/2协议的详细指南

《Nginx中配置HTTP/2协议的详细指南》HTTP/2是HTTP协议的下一代版本,旨在提高性能、减少延迟并优化现代网络环境中的通信效率,本文将为大家介绍Nginx配置HTTP/2协议想详细步骤,需... 目录一、HTTP/2 协议概述1.HTTP/22. HTTP/2 的核心特性3. HTTP/2 的优

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

Win11安装PostgreSQL数据库的两种方式详细步骤

《Win11安装PostgreSQL数据库的两种方式详细步骤》PostgreSQL是备受业界青睐的关系型数据库,尤其是在地理空间和移动领域,:本文主要介绍Win11安装PostgreSQL数据库的... 目录一、exe文件安装 (推荐)下载安装包1. 选择操作系统2. 跳转到EDB(PostgreSQL 的

Python3.6连接MySQL的详细步骤

《Python3.6连接MySQL的详细步骤》在现代Web开发和数据处理中,Python与数据库的交互是必不可少的一部分,MySQL作为最流行的开源关系型数据库管理系统之一,与Python的结合可以实... 目录环境准备安装python 3.6安装mysql安装pymysql库连接到MySQL建立连接执行S