企业级实践为“燃料”,大模型助推Kyligence产品力向上

2024-01-06 15:44

本文主要是介绍企业级实践为“燃料”,大模型助推Kyligence产品力向上,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

回顾2023年,最火热的科技话题无疑是生成式AI。

从ChatGPT横空出世,到“千模大战”如火如荼,AIGC正式破圈,成为企业数字化转型的新关键词。

在红杉中国《2023企业数字化年度指南》中,通过调研235家企业可知,79.4%的受访企业已经开始进行AIGC应用的初步探索,23.6%的受访企业已经利用AIGC产生明显价值。

图源:红杉中国

这些数据清晰地反映,大部分企业都希望拥抱这一波大模型的技术浪潮,AI企业级应用的奇点正在到来。

对于服务于企业数字化的科技公司来说,这既是一次技术迭代的挑战,也是重新定义产品力的机遇。数智化商业创新再次席卷To B企业服务赛道。比如,12月19日,大数据分析和指标平台供应商跬智信息(Kyligence)发布了数据和分析领域垂直大模型司南,与旗下产品Kyligence Zen(智能一站式指标平台)、Kyligence Copilot(AI 数智助理)结合,旨在帮助企业以更快周期、更低成本落地AI。这是企服赛道玩家拥抱大模型,探索升级产品的一个缩影。

那么,大模型的应用,能否有效提升企服产品服务力?企业数智化转型下,中国企服会迎来哪些机遇?

一、技术knowhow+企业级实践,中国企服大模型落地的先行条件

拥抱AI技术是整个科技界的共识。而在企业管理领域,新技术的价值更是可以在实践中更清晰地被感知。

过去,从拿到数据、清洗与规整数据、建立模型、分析数据,直到做出业务决策,在经营层面对IT技术人员与业务人员之间的协同要求高,在效率方面也往往不尽如人意,因为数据是滞后的。

随着科技进步,利用新技术来优化经营策略成为企业必选项。数字化转型也确确实实带给了一部分企业红利。

然而,数字化转型并不总是成功的。企业变革最重要的目标是提升运营效率,但是如果没有符合当下管理现状的转型路径,企业很难从技术创新中获益——数字化不仅是IT范畴,也是业务管理范畴。

问题是,每一家企业的转型对于自身来说都是一个新鲜案例,而一套成熟的管理产品和体系,需要技术knowhow与业务knowhow的双重沉淀。显然,这两者是矛盾的。

正因如此,企服赛道才会随着数智化进程而迎来快速发展的机遇。而商业化成功的企服公司提供的不仅是好的产品,还有成熟的落地经验。只有对企业业务有足够多的思考和沉淀,才能让新技术发挥其价值。

笔者了解到,目前海外市场落地大模型商业化应用的企业,大部分本就是企服赛道的“老玩家”。比如,微软、Salesforce、Adobe、SAP、Palantir等公司。

而Kyligence探索大模型应用之前,也已经服务中国、美国、欧洲及亚太的多个银行、证券、保险、制造、零售、医疗等行业客户,包括建设银行、平安银行、浦发银行、北京银行、宁波银行、太平洋保险、中国银联、上汽、长安汽车、星巴克、安踏、李宁、阿斯利康、UBS、MetLife等全球知名企业,并和微软、亚马逊云科技、华为、安永、德勤等达成全球合作伙伴关系。

可以说,大量客户服务的经验,是企服公司开启AI变革的必要条件。那么,大模型能够为企业服务行业带来哪些新的突破?

二、“AI+”落地数智赋能,使用效率与学习门槛的双重颠覆

企业转型的难题就是答案:效率与门槛。

当下,企业级产品结合AI大模型,最直接的表现就是可以根据用户的自然语言输入,快速生成符合用户需求和预期的内容和结果。未来,随着多模态大模型技术演进,AI大模型可以帮助企业级软件拓展新的功能和应用,因为它们可以利用海量的数据和知识,生成各种类型和风格的内容,满足不同的业务和场景需求。

从具体应用来看,在海外市场,微软通过开放Azure OpenAI赋能旗下产品,提升员工的效率;Salesforce也通过Einstein GPT将公共和私有AI模型与CRM数据相结合,在销售、服务、营销、商业等各个领域提供人工智能自动创建的内容,以适应实时变化的客户信息和公司流程。

在国内通用软件领域,腾讯会议基于混元大模型打造了AI小助手,只需要简单的自然语言指令,就能完成会议信息提取、内容分析等复杂任务,会后还能生成智能总结纪要。

而在数据分析的垂直赛道,Kyligence推出的基于AI大模型的数智助理Kyligence Copilot,目的也是提升企业效率和降低企业数字化门槛。

从效果来看,大模型的应用落地已经逐步释放生产力。以Kyligence为例,通过搭载AI数智助理,Kyligence核心产品Kyligence Zen(智能一站式指标平台)实现了决策效率和使用门槛的“双杀”。

一方面,如今的Kyligence Zen可以灵活响应不断变化的业务分析需求,提升业务决策效率。

图源:Kyligence

另一方面,通过自然语言对话,让企业使用者更方便地获取数据洞察和建议,而不需要编写复杂的 SQL 语句或者使用其他工具,降低了学习成本。

图源:Kyligence

“企服产品+大模型”毫无疑问顺应了当下企业管理需求。红杉中国在《2023企业数字化年度指南》中提出,在当前不确定性增大的商业环境中,部分受访企业的运营面临着巨大的压力。无论是市场竞争加剧,还是消费者需求日益多元化,或者是科技进步带来的挑战,都促使企业必须动态调整其经营策略以适应变化。

可以预见,企服领域会不断涌现各种类型的实时智能服务,以实现企业经营实时的决策制定。围绕AI核心能力,增强企业分析和决策能力,成为企服赛道下一个增长点。

图源:艾瑞咨询

随着智能化浪潮的到来,Kyligence在帮助企业数智化转型的同时,也为自身按下了名为“AI+”的发展快进键。

三、释放数智生产力,铺开数字经济万亿蓝图

从数字化到数智化,一场变革浪潮已不可避免。以AI变革企业运营与管理效率,是中国企服公司必须迈出的新航程。

一方面,国内外的“AI+”企业级应用已经初见商业化成果。

梳理大模型海外进展,天风证券指出,从微软、Salesforce、Adobe、SAP、Palantir等公司的产品节奏看,大模型逐渐应用落地场景。头部企业级软件公司已经开始进入了大模型商业化的新阶段。

同时,在国内企服赛道,相关企业也有了丰富的落地案例和独特打法。比如,Kyligence“AI+指标+知识库”的体系。根据公开资料,Kyligence展示了潘多拉指标平台的应用案例。

图源:Kyligence《2023指标平台建设方法与实践白皮书》

据悉,该平台为银行亿级数据量级下多维分析提供了完整的解决方案。从效果上看,根据《白皮书》,潘多拉平台缩短数据开发周期平均3-5 天;大数据报表开发人力耗费减少30%;常规需求替换率达到25%以上(不依赖数据开发而制作的看板)。

另一方面,基于实践效果,企业对于拥抱新技术的态度越来越积极。调研机构Gartner预判,到2026年将有超过1亿人和机器人同事(生成式 AI)一起工作或有一个AI助手;到2027年,将有近15%的新应用程序由AI自动生成,无需人工参与。

这也为拥抱大模型落地的企服公司带来前所未有的机遇。从2022年《“十四五”数字经济发展规划》,到2023年《数字中国建设整体布局规划》,企业数字化转型被提升至更高的高度。而AIGC激发了数字经济的活力与创造力,大模型必将引领AI的未来道路,加速数字经济发展。

展望未来,智能时代的新纪元正在到来,数字经济蓬勃发展。根据灼识咨询预计,全球AI市场将于2030年达到1万亿美元;AI在各垂直领域的应用渗透率也将继续提升。

一张万亿规模的产业蓝图在中国企服公司面前徐徐铺开。拥抱技术变革,将其转化为自身产品力、服务力,企服公司才能走上发展“高速公路”。

来源:松果财经

这篇关于企业级实践为“燃料”,大模型助推Kyligence产品力向上的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576806

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Docker集成CI/CD的项目实践

《Docker集成CI/CD的项目实践》本文主要介绍了Docker集成CI/CD的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录一、引言1.1 什么是 CI/CD?1.2 docker 在 CI/CD 中的作用二、Docke

Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)

《Python基于火山引擎豆包大模型搭建QQ机器人详细教程(2024年最新)》:本文主要介绍Python基于火山引擎豆包大模型搭建QQ机器人详细的相关资料,包括开通模型、配置APIKEY鉴权和SD... 目录豆包大模型概述开通模型付费安装 SDK 环境配置 API KEY 鉴权Ark 模型接口Prompt

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G