【递归】C++算法:124 二叉树中的最大路径和

2024-01-06 11:20

本文主要是介绍【递归】C++算法:124 二叉树中的最大路径和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【字符串】扰乱字符串

本文涉及的基础知识点

递归

124. 二叉树中的最大路径和

二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
是路径中各节点值的总和。
给你一个二叉树的根节点 root ,返回其 最大路径和 。
示例 1:
输入:root = [1,2,3]
输出:6
解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
示例 2:
输入:root = [-10,9,20,null,null,15,7]
输出:42
解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
参数范围
树中节点数目范围是 [1, 3 * 104]
-1000 <= Node.val <= 1000

递归

任何路径,必定有且一个节点是路径所有节点的祖先,我们可以枚举路径的祖先节点。故时间复杂度是O(n)。
对于Do函数只考虑本节点及其子孙,不考虑其祖先。

iLeafDirMaxSum以root为起点的最大路径和,必定包括root节点,如果左支或右支的iLeafDirMaxSum较大者为正,则加上。
iRet以root为根的最大路径和,必定包括root节点,如果左支(右支)iLeafDirMaxSum为正,则加上

代码

核心代码

class Solution {
public:int maxPathSum(TreeNode* root) {Do(root);return m_iRet;}int Do(TreeNode* root){if (nullptr == root){return 0;}const int left = Do(root->left);const int right = Do(root->right);int iRet = root->val;if (left >= 0){iRet += left;}if (right >= 0){iRet += right;}m_iRet = max(iRet, m_iRet);std::cout << "root:" << root->val << " ret " << iRet << std::endl;int iLeafDirMaxSum = root->val;const int iMax = max(left, right);if (iMax >= 0){iLeafDirMaxSum += iMax;}return iLeafDirMaxSum;}int m_iRet = -10000'0000;
};

测试用例

struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}TreeNode(int x, int iLeft) : val(x), left(new TreeNode(iLeft)), right(nullptr) {}TreeNode(int x, int iLeft, int iRghit) : val(x), left(new TreeNode(iLeft)), right(new TreeNode(iRghit)) {}
};namespace NTree
{TreeNode* Init(const vector<int>& nums, int iNull = 10000){if (0 == nums.size()){return nullptr;}vector<TreeNode*> ptrs(nums.size() + 1), ptrParent(1);for (int i = 0; i < nums.size(); i++){if (iNull == nums[i]){continue;}const int iNO = i + 1;ptrs[iNO] = new TreeNode(nums[i]);ptrParent.emplace_back(ptrs[iNO]);if (1 == iNO){continue;}if (iNO & 1){//奇数是右支ptrParent[iNO / 2]->right = ptrs[iNO];}else{ptrParent[iNO / 2]->left = ptrs[iNO];}}return ptrs[1];}
}template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}
}int main()
{string s,t;	const int null = -10000;{Solution sln;vector<int> nums = { 1,2,3 };auto root = NTree::Init(nums, null);auto res = sln.maxPathSum(root);Assert(6, res);}{Solution sln;vector<int> nums = { -10,9,20,null,null,15,7 };auto root = NTree::Init(nums, null);auto res = sln.maxPathSum(root);Assert(42, res);}}

2023年1月代码

/**

  • Definition for a binary tree node.
  • struct TreeNode {
  • int val;
    
  • TreeNode *left;
    
  • TreeNode *right;
    
  • TreeNode() : val(0), left(nullptr), right(nullptr) {}
    
  • TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    
  • TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
    
  • };
    */

class Solution {
public:
int maxPathSum(TreeNode* root) {
Sum(root);
return m_iRet;
}
int Sum(TreeNode* node)
{
if (nullptr == node)
{
return 0;
}
std::multiset setLeftRight;
setLeftRight.insert(Sum(node->left));
setLeftRight.insert(Sum(node->right));
if (*setLeftRight.begin() > 0)
{
m_iRet = max(m_iRet, node->val + *setLeftRight.begin() + *setLeftRight.rbegin());
}
if (*setLeftRight.rbegin() > 0)
{
m_iRet = max(m_iRet, node->val + *setLeftRight.rbegin());
return node->val + setLeftRight.rbegin();
}
m_iRet = max(m_iRet, node->val);
return node->val;
}
int m_iRet = INT_MIN;
std::unordered_map<TreeNode
, std::set> m_mapTop2Dis;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【递归】C++算法:124 二叉树中的最大路径和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576194

相关文章

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

SpringBoot路径映射配置的实现步骤

《SpringBoot路径映射配置的实现步骤》本文介绍了如何在SpringBoot项目中配置路径映射,使得除static目录外的资源可被访问,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一... 目录SpringBoot路径映射补:springboot 配置虚拟路径映射 @RequestMapp

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

Python lambda函数(匿名函数)、参数类型与递归全解析

《Pythonlambda函数(匿名函数)、参数类型与递归全解析》本文详解Python中lambda匿名函数、灵活参数类型和递归函数三大进阶特性,分别介绍其定义、应用场景及注意事项,助力编写简洁高效... 目录一、lambda 匿名函数:简洁的单行函数1. lambda 的定义与基本用法2. lambda