【递归】C++算法:124 二叉树中的最大路径和

2024-01-06 11:20

本文主要是介绍【递归】C++算法:124 二叉树中的最大路径和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【动态规划】【字符串】扰乱字符串

本文涉及的基础知识点

递归

124. 二叉树中的最大路径和

二叉树中的 路径 被定义为一条节点序列,序列中每对相邻节点之间都存在一条边。同一个节点在一条路径序列中 至多出现一次 。该路径 至少包含一个 节点,且不一定经过根节点。
是路径中各节点值的总和。
给你一个二叉树的根节点 root ,返回其 最大路径和 。
示例 1:
输入:root = [1,2,3]
输出:6
解释:最优路径是 2 -> 1 -> 3 ,路径和为 2 + 1 + 3 = 6
示例 2:
输入:root = [-10,9,20,null,null,15,7]
输出:42
解释:最优路径是 15 -> 20 -> 7 ,路径和为 15 + 20 + 7 = 42
参数范围
树中节点数目范围是 [1, 3 * 104]
-1000 <= Node.val <= 1000

递归

任何路径,必定有且一个节点是路径所有节点的祖先,我们可以枚举路径的祖先节点。故时间复杂度是O(n)。
对于Do函数只考虑本节点及其子孙,不考虑其祖先。

iLeafDirMaxSum以root为起点的最大路径和,必定包括root节点,如果左支或右支的iLeafDirMaxSum较大者为正,则加上。
iRet以root为根的最大路径和,必定包括root节点,如果左支(右支)iLeafDirMaxSum为正,则加上

代码

核心代码

class Solution {
public:int maxPathSum(TreeNode* root) {Do(root);return m_iRet;}int Do(TreeNode* root){if (nullptr == root){return 0;}const int left = Do(root->left);const int right = Do(root->right);int iRet = root->val;if (left >= 0){iRet += left;}if (right >= 0){iRet += right;}m_iRet = max(iRet, m_iRet);std::cout << "root:" << root->val << " ret " << iRet << std::endl;int iLeafDirMaxSum = root->val;const int iMax = max(left, right);if (iMax >= 0){iLeafDirMaxSum += iMax;}return iLeafDirMaxSum;}int m_iRet = -10000'0000;
};

测试用例

struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}TreeNode(int x, int iLeft) : val(x), left(new TreeNode(iLeft)), right(nullptr) {}TreeNode(int x, int iLeft, int iRghit) : val(x), left(new TreeNode(iLeft)), right(new TreeNode(iRghit)) {}
};namespace NTree
{TreeNode* Init(const vector<int>& nums, int iNull = 10000){if (0 == nums.size()){return nullptr;}vector<TreeNode*> ptrs(nums.size() + 1), ptrParent(1);for (int i = 0; i < nums.size(); i++){if (iNull == nums[i]){continue;}const int iNO = i + 1;ptrs[iNO] = new TreeNode(nums[i]);ptrParent.emplace_back(ptrs[iNO]);if (1 == iNO){continue;}if (iNO & 1){//奇数是右支ptrParent[iNO / 2]->right = ptrs[iNO];}else{ptrParent[iNO / 2]->left = ptrs[iNO];}}return ptrs[1];}
}template<class T>
void Assert(const T& t1, const T& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}
}int main()
{string s,t;	const int null = -10000;{Solution sln;vector<int> nums = { 1,2,3 };auto root = NTree::Init(nums, null);auto res = sln.maxPathSum(root);Assert(6, res);}{Solution sln;vector<int> nums = { -10,9,20,null,null,15,7 };auto root = NTree::Init(nums, null);auto res = sln.maxPathSum(root);Assert(42, res);}}

2023年1月代码

/**

  • Definition for a binary tree node.
  • struct TreeNode {
  • int val;
    
  • TreeNode *left;
    
  • TreeNode *right;
    
  • TreeNode() : val(0), left(nullptr), right(nullptr) {}
    
  • TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
    
  • TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
    
  • };
    */

class Solution {
public:
int maxPathSum(TreeNode* root) {
Sum(root);
return m_iRet;
}
int Sum(TreeNode* node)
{
if (nullptr == node)
{
return 0;
}
std::multiset setLeftRight;
setLeftRight.insert(Sum(node->left));
setLeftRight.insert(Sum(node->right));
if (*setLeftRight.begin() > 0)
{
m_iRet = max(m_iRet, node->val + *setLeftRight.begin() + *setLeftRight.rbegin());
}
if (*setLeftRight.rbegin() > 0)
{
m_iRet = max(m_iRet, node->val + *setLeftRight.rbegin());
return node->val + setLeftRight.rbegin();
}
m_iRet = max(m_iRet, node->val);
return node->val;
}
int m_iRet = INT_MIN;
std::unordered_map<TreeNode
, std::set> m_mapTop2Dis;
};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【递归】C++算法:124 二叉树中的最大路径和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/576194

相关文章

C++中实现调试日志输出

《C++中实现调试日志输出》在C++编程中,调试日志对于定位问题和优化代码至关重要,本文将介绍几种常用的调试日志输出方法,并教你如何在日志中添加时间戳,希望对大家有所帮助... 目录1. 使用 #ifdef _DEBUG 宏2. 加入时间戳:精确到毫秒3.Windows 和 MFC 中的调试日志方法MFC

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

深入理解C++ 空类大小

《深入理解C++空类大小》本文主要介绍了C++空类大小,规定空类大小为1字节,主要是为了保证对象的唯一性和可区分性,满足数组元素地址连续的要求,下面就来了解一下... 目录1. 保证对象的唯一性和可区分性2. 满足数组元素地址连续的要求3. 与C++的对象模型和内存管理机制相适配查看类对象内存在C++中,规

在 VSCode 中配置 C++ 开发环境的详细教程

《在VSCode中配置C++开发环境的详细教程》本文详细介绍了如何在VisualStudioCode(VSCode)中配置C++开发环境,包括安装必要的工具、配置编译器、设置调试环境等步骤,通... 目录如何在 VSCode 中配置 C++ 开发环境:详细教程1. 什么是 VSCode?2. 安装 VSCo

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

python获取当前文件和目录路径的方法详解

《python获取当前文件和目录路径的方法详解》:本文主要介绍Python中获取当前文件路径和目录的方法,包括使用__file__关键字、os.path.abspath、os.path.realp... 目录1、获取当前文件路径2、获取当前文件所在目录3、os.path.abspath和os.path.re

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

【C++ Primer Plus习题】13.4

大家好,这里是国中之林! ❥前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。有兴趣的可以点点进去看看← 问题: 解答: main.cpp #include <iostream>#include "port.h"int main() {Port p1;Port p2("Abc", "Bcc", 30);std::cout <<