科锐16位汇编学习笔记01汇编基础和debug使用

2024-01-06 07:20

本文主要是介绍科锐16位汇编学习笔记01汇编基础和debug使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为什么学习16位汇编?

16位操作指令最多能够操作两个字节,且更能够体现出与硬件的交互。16位下的指令和32位汇编的指令差不多。16位汇编的指令在32位一样使用.要学好汇编必须要了解一点点硬件知识,16汇编是直接操作硬件,32位汇编指令跟硬件隔离了

硬件运行机制

1. 为什么计算机的操作数据的单位是二进制?

字节是内存操作的最小单位,但是才是计算机操作的最小单位

•电子器件二极管

•正向加电则通,反向加电则不同

•门电路

因为二进制是最简单的计算,所以二进制的计算非常快,CPU的处理是通过算术/逻辑 单元 ALU 来处理数据的。

例如:

  • 可以通过位于运算获取结果。

用法:

算术运算的结果是通过位运算得到得

加法

结果 进位

0 + 1 = 1 0

0 + 0 = 0 0

1 + 0 = 1 0

1 + 1 = 0 1

结果 - 异或

进位 - 位与

减法

加补码

乘法

5 = 3 (4 + 1) = 3_4 + 3_1 = 3 <<2 + 3

除法

情况比较复杂

机器码 助记符

7f+12 000111111100010010 add 7f, 12

45&36 10 0100010100110110 and 45, 36

2. 算术/逻辑 单元(ALU)

所有的数学运算都可以由位运算组成。那么更高级的数学运算也可以通过简单的位运算计算。所以将常用运算封装成一个器件,称之为单元。

3. 机器码

类似于1111110000010101010B,可以用来控制硬件的二进制数据,叫做机器码、

4. 助记符

二进制值难记,每种功能的二进制控制码取一个容易记住的名字,叫做助记符,也称之为指令。

00B - add + 加法

01B - sub - 减法

10B - and & 与运算

11B - xor ^ 异或运算

5. 汇编

助记符硬件不能识别,需要将其转换成对应的的机器码,这个过程叫做汇编。(助记符转机器码)

微机系统硬件组成

概述
1. 一个硬件系统都有什么?

● 一个系统不可能由一个硬件单独完成,所以划分处多个硬件模块,然后由一个模块居中调度。称作CPU。

2. CPU如何与其他硬件做交互?

● I/O桥 所有的硬件模块连接到I/O桥,由I/O桥负责辅助cpu与哪一个硬件模块连接。

● 总线

3. cpu如何去选择不同的硬件模块?

● 位多路复用器

CPU:一个系统不可能由一个硬件单独完成,所以划分多个硬件模块,然后由一个硬件模块居中调度

cpu的主要工作:1.算术运算;2.读写,即从一个硬件中读写至另一个硬件中。

•总线 cpu有8位数据/地址线,ram是个256byte的存储器。

控制线用来表明操作类型 00 设置地址 01 读 10 写 11 保留

例如: 将 45 写入 地址 7f

在控制线上 加 00 (设置地址),并将 7f 设置到 数据地址线

ram收到指令将地址调到7f

在控制线上 加 10 (写),并将 45 设置到 数据地址线

ram收到指令将 45 设置到之前写的地址上

读跟写差不多,但是如果要改地址,必须重新开始

8086逻辑图

引脚复用: 引脚用来当地址用,又用来当数据用, AD引脚数决定是多少位cpu

A address 地址 寻址 范围 (0-2^20 1M)

D data 数据 传输数据(16位 2个字节 1个字)

余量

计算机系统组成

从编写完以下代码到屏幕显示字符中间发生了什么?

#include <stdio.h>int main() { printf(“hello world\n”); }

•编译

•加载可执行文件

•执行

8086cpu组织结构

8086cpu内部有2个模块组成
•EU部件

执行部件(excution unit)

译码

执行指令

•BIU部件

总线接口部件(bus interface unit)

取指令

读取数据

写入数据

8086cpu将指令的执行分成多个模块,有什么好处?

目的: 让硬件的利用率最大

•流水线: 可以多个部件同时工作,提高硬件的利用率,从而提高效率。

1.取指令

2.译码

3.取数据

4.执行

5.存储结果

1,2,4是必须的。

流水线并不是越深越好,否则一旦出现分支转移,其后果将会很恶劣

寄存器

cpu的“局部变量”

debug的使用

配置环境

\1. XP系统

2.dosbox (推荐) https://www.dosbox.com

3.msdos player

4.dosbox-x (推荐) https://dosbox-x.com

使用 vscode

注意: 选择使用的汇编工具必须是 MASM , TASM 是 linux 的 语言, dos环境建议使用 dosbox-x

dosbox-x 也可以直接在官网下载

因为这个是模拟的,所以无法访问本地磁盘,可以映射某个文件夹让他当c盘去用

改动配置文件的情况: dosbox-x.conf

取消粘贴的修饰符:

挂载:

mount C: G:\asm16

C:

使用方法

基本DOS命令:

#cd\ ——首先要用cd\ 退回到根目录C>下 #dir ——显示文件列表 #md hb ——建立hb子目录 #cd hb ——进入hb子目录 #copy d:\dos\masm.exe c:\hb ——将D盘dos目录下的masm.exe拷贝到C盘hb目录下 #copy d:\dos\link.exe c:\hb ——将D盘dos目录下的link.exe拷贝到C盘hb目录下 #cd .. ——退回到上一级目录 #del \hb\masm.exe ——删除hb子目录中的某文件 #rd hb ——删除hb子目录(子目录中的所有文件必须先删除) #e:——进入e盘 #cls ——清屏 #type——显示文本文件内容(如type c:\hb\abc.asm)

DosBox常用指令

[range] = [startaddr] [endaddr] 或者 [startaddr]

指令作用用法
帮助文档-?
U反汇编(把机器码变成助记符)-u,-u**[range] ****
**A输入汇编指令a [addr]**
**R查看和修改寄存器r [reg]**
**D查看内存单元d [range]**
**E修改内存单元e addr**
**G直接运行相当于 F5**
**T单步步入相当于 F11**
**P单步步过相当于 F10**
**写入文件(n,cx,w)将内存数据保存到文件-n "文件名"**-r cx 20 (字节数)-w 开始地址(没有默认为100)**
Q退出

a 后面如果跟地址,代表从该地址开始写汇编代码,不跟则默认从ip地址开始写,写完一行按回车确认,全部写完空行回车 

R 后面跟寄存器代表可以修改寄存器的值

e后面跟地址代表修改该处内存的值,按空格 表示 继续修改后面的,按回车表示修改结束

e addr [val1 逗号|空格 val2 逗号|空格 val3 。。。]

e addr "字符串"

注意: 保存数据是从 地址 100 开始的,跟ip地址的值无关,如果要向指定开始位置,w 后面加 开始地址

标志寄存器

常用的是 ZF 和 DF

条件标志:

CF 进位标志:用于反映运算是否产生进位或借位。如果运算结果的最高位产生一个进位或借位,则CF置1,否则置0。运算结果的最高位包括字操作的第15位和字节操作的第7位。移位指令也会将操作数的最高位或最低位移入CF。

PF 奇偶标志:用于反映运算结果低8位中“1”的个数。“1”的个数为偶数,则PF置1,否则置0。

AF 辅助进位标志**:**算数操作结果的第三位(从0开始计数)如果产生了进位或者借位则将其置为1,否则置为0,常在BCD(binary-codedecimal)算术运算中被使用。

ZF 零标志:用于判断结果是否为0。运算结果0,ZF置1,否则置0。

SF 符号标志:用于反映运算结果的符号,运算结果为负,SF置1,否则置0。因为有符号数采用补码的形式表示,所以SF与运算结果的最高位相同。

OF 溢出标志:反映有符号数加减运算是否溢出。如果运算结果超过了8位或者16位有符号数的表示范围,则OF置1,否则置0。

控制标志:

TF 跟踪标志:当TF被设置为1时,CPU进入单步模式,所谓单步模式就是CPU在每执行一步指令后都产生一个单步中断。主要用于程序的调试。8086/8088中没有专门用来置位和清零TF的命令,需要用其他办法。

IF 中断标志:决定CPU是否响应外部可屏蔽中断请求。IF为1时,CPU允许响应外部的可屏蔽中断请求。

DF 方向标志:决定串操作指令执行时有关指针寄存器调整方向。当DF为1时,串操作指令按递减方式改变有关存储器指针值,每次操作后使SI、DI递减。

CF 进位标志

当运算结果的最高有效位有进位(加法)或借位(减法)时设置。  进位标志置1,即CF = 1;否则CF = 0  用途:用于表示两个无符号数高低。  举例:  3AH + 7CH=B6H,     没有进位:CF = 0     NC  AAH + 7CH=(1)26H,有进位:  CF = 1     CY

零标志ZF

若运算结果为0则ZF=1,否则ZF=0。  用途:用于表示两个无符号数高低。  举例:  3AH + 7CH=B6H,结果不是零:   ZF = 0    ZR  84H + 7CH=(1)00H, 结果是零:ZF = 1    NZ

溢出标志OF

溢出只发生在 正数+正数 负数+负数 负数- 正数 正数-负数 的情况

使用该标志位判断运算结果是否溢出。(当将操作数作为有符号数时)  加法:若同符号数相加,结果的符号与之相反则OF=1,否则OF置0。  减法:被减数与减数异号,而结果的符号与减数相同则OF=1,否则置0。  发生了溢出,说明了运算结果不可信。  3AH + 7CH=B6H,     产生溢出:OF = 1     OV  AAH + 7CH=(1)26H, 没有溢出:OF = 0     NV

进位和溢出

进位CF 针对的是无符号数运算,溢出OF 针对的是有符号数运算。  当看成无符号数,则关注CF标志,看成有符号数,则关注OF标志。 

cpu运算时,不管数据是有符号还是无符号,它运算完,会当作有符号数设置 CF 位,也会当作无符号数设置 of 位,即2个操作位都会设置, 至于最后看哪个位要根据我们的业务逻辑自己去选择

符号标志SF

运算结果最高位为1,SF为1,否则为0。  有符号数据用最高有效位表示数据的符号,最高有效位是符号标志的状态。  举例:  3AH + 7CH=B6H,     最高位D7=1:   SF = 1    NG  84H + 7CH=(1)00H, 最高位D7=0:   SF = 0    PL

奇偶标志位PF

当运算结果(指低8位)中1的个数为偶数时,PF置1,否则置0。  作用:该标志位主要用于检测数据在传输过程中的错误。  举例:  3AH + 7CH=B6H=10110110B  结果中有5个1,是奇数:PF = 0   PO 

3AH + 7AH=B6H=10110100B  结果中有4个1,是偶数:PF = 1   PE

辅助进位标志位AF

科锐学习笔记-第三阶段-16位汇编 01 汇编基础和debug使用-编程&逆向技术交流-游戏安全实验室

表示一个字节的低4位是否有进位和借位。运算时D3位(低半字节)有进位或借位时,AF = 1;否则AF = 0。 

处理器内部使用,用于十进制算术运算调整指令中,用户一般不必关心 

3AH + 7CH=B6H,D3有进位:AF = 1    AC  31H + 71H=A2H,D3无进位:AF = 0    NA

标志位状态总结
标志位标志名称FLASETURE
OF溢出标志NV OV
DF方向标志UPDN
IF中断标志DIEI
SF符号标志PLNG
ZF零标志NZZR
AF辅助进位标志NAAC
PF奇偶标志POPE
CF进位标志NCCY

在 debug中顺序

OF[溢出 ] DF[方向] IF[中断] SF[符号] ZF[零] AF[辅助进位] PF[奇偶] CF[进位]

这篇关于科锐16位汇编学习笔记01汇编基础和debug使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575628

相关文章

vue使用docxtemplater导出word

《vue使用docxtemplater导出word》docxtemplater是一种邮件合并工具,以编程方式使用并处理条件、循环,并且可以扩展以插入任何内容,下面我们来看看如何使用docxtempl... 目录docxtemplatervue使用docxtemplater导出word安装常用语法 封装导出方

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

Java中List的contains()方法的使用小结

《Java中List的contains()方法的使用小结》List的contains()方法用于检查列表中是否包含指定的元素,借助equals()方法进行判断,下面就来介绍Java中List的c... 目录详细展开1. 方法签名2. 工作原理3. 使用示例4. 注意事项总结结论:List 的 contain

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意