【基础篇】十三、强软弱虚引用、终结器引用

2024-01-06 06:12

本文主要是介绍【基础篇】十三、强软弱虚引用、终结器引用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 0、相关🖊
  • 1、强引用
  • 2、软引用
  • 3、弱引用
  • 4、虚引用
  • 5、终结引用

关于对象能否被回收:

  • 计数器
  • 可达性分析

还可以根据引用的类型,不同的引用类型,对应对象的不同GC回收规则。

0、相关🖊

📕【强软弱虚】

在这里插入图片描述

1、强引用

  • 默认强引用,即把一个对象赋值给一个变量(也叫引用)
Object o = new Object();
  • GC时,有强引用的对象不会被回收,即使OOM了

Demo:

public class Demo {public static void main(String[] args) {Demo demo = new Demo();System.out.println("GC前: " + demo);System.gc();System.out.println("GC后: " + demo);//断掉强引用demo = null;System.gc();System.out.println("断掉强引用并GC: " + demo);}
}

在这里插入图片描述

2、软引用

  • 内存足够时,不会被GC回收
  • 内存不足时,才被GC回收
  • 包装为软引用:new SoftReference<对象类型>(对象)
    在这里插入图片描述
public class SoftReferenceDemo {public static void main(String[] args) {byte[] byte1 = new byte[1024 * 1024 * 100];SoftReference<byte[]> softReference = new SoftReference<>(byte1);byte1 = null;System.gc();System.out.println("内存充足时:" + softReference.get());try {byte[] bytes = new byte[1024 * 1024 * 100];} catch (Error e) {e.printStackTrace();} finally {System.out.println("内存不足时:" + softReference.get());}}}
public class SoftReferenceDemo {public static void main(String[] args) {SoftReference<byte[]> softReference = new SoftReference<>(new byte[1024 * 1024 * 100]);System.gc();System.out.println("内存充足时:" + softReference.get());try {byte[] bytes = new byte[1024 * 1024 * 100];} catch (Error e) {e.printStackTrace();} finally {System.out.println("内存不足时:" + softReference.get());}}}

注意上面两份代码的区别,前者必须加个byte1 = null,这是个强引用,不断掉,即使内存不够,byte1对象也不会被回收,soft Reference.get结果也就一直不为null。这个地方卡了半小时,想着怎么还不回收,看半天发现这儿有个强引用。设置-Xmx200m,运行:

在这里插入图片描述

以上代码,盒子里的东西已经没了(被包装的对象被回收,get得到结果为null了),盒子也就没必要再留了。 但盒子里的东西何时被回收不确定,不能直接写一句先把盒子干掉:

softReference = null;

软引用中的对象如果在内存不足时回收,SoftReference对象本身也需要被回收:
在这里插入图片描述

  • 创建软引用时,构造方法里再传入一个引用队列
  • 对象A被回收,外层的SoftReference对象会加入队列
  • 遍历干掉外层的SoftReference

Demo:

public class SoftReferenceDemo {public static void main(String[] args) {ReferenceQueue<byte[]> queue = new ReferenceQueue<>();ArrayList<SoftReference<byte[]>> list = new ArrayList<>();for (int i = 0; i < 10; i++) {byte[] byte1 = new byte[1024 * 1024 * 100];//包装对象时再传个队列SoftReference<byte[]> softReference = new SoftReference<>(byte1, queue);list.add(softReference);}int count = 0;//能从队里拿出来的,都是对象被回收的while (queue.poll() != null) {++count;}System.out.println(count);}}

设置JVM堆内存total和max为200M(实际可用约190M左右),循环十次,自然有九个byte[ ] 对象回收,queue长度应该是9:

在这里插入图片描述

poll弹出的就是被回收掉内存对象的SoftReference对象。

3、弱引用

  • 不管JVM内存是否够用,GC运行,弱引用对象均被回收。
  • 和软引用一样,也可搭配一个引用队列
  • 用于ThreadLocal应对内存泄漏

在这里插入图片描述

public class Demo {public static void main(String[] args) {WeakReference<Demo> reference = new WeakReference<>(new Demo());System.out.println("GC前: " + reference.get());System.gc();System.out.println("GC后: " + reference.get());}
}

在这里插入图片描述

4、虚引用

  • 幽灵引用/幻影引用
  • 虚,形同虚设的意思
  • 和其他几种引用不一样,它不影响对象的回收规则
  • 仅有虚引用指向的对象,随时可能会被回收
  • 唯一的用途是当对象被垃圾回收器回收时可以接收到对应的通知
  • 虚引用get方法返回结果总为null

虚引用的一个应用场景是直接内存的释放问题:

public class Demo {public static final int size = 1024 * 1024 * 10;public static void main(String[] args) {/*** allocateDirect方法创建DirectByteBuffer对象* DirectByteBuffer对象构造方法里向操作系统申请了直接内存*/ByteBuffer directBuffer = ByteBuffer.allocateDirect(size);//干掉强引用directBuffer = null;System.gc();System.out.println();}
}

DirectByteBuffer对象被回收的时候,需要收到一个消息,去把直接内存的空间也释放了(不能只GC把堆里的DirectByteBuffer对象空间释放了,GC主要是处理堆,不是处理直接内存的)

在这里插入图片描述

往下跟:

在这里插入图片描述

Cleaner类继承了虚引用类,这里传入要监控的ByteBuffer对象,告诉虚引用我要监控这个对象的回收,接下来会有一个线程去监控这个对象的回收,

在这里插入图片描述

当ByteBuffer对象被回收,就调用Deallocator类(实现了Runnable接口)的run方法,run方法里干的活儿就是释放了直接内存:

在这里插入图片描述

贴个清晰点的Demo:

public class ReferenceDemo {public static void main(String[] args) {MyObject myObject = new MyObject();ReferenceQueue<MyObject> referenceQueue = new ReferenceQueue<>();PhantomReference<MyObject> phantomReference = new PhantomReference<>(myObject, referenceQueue);List<byte[]> list = new ArrayList<>();new Thread(() -> {while (true){list.add(new byte[1024 * 1024]); //1M//歇500ms,写1M进Listtry {TimeUnit.MILLISECONDS.sleep(500);} catch (InterruptedException e) {e.printStackTrace();}//验证下每次get都是nullSystem.out.println(phantomReference.get() + " list add OK.");}},"t1").start();new Thread(() -> {while (true){Reference<? extends MyObject> reference = referenceQueue.poll();if(reference != null){System.out.println("有虚引用对象被回收,加入了队列");//break;}}},"t2").start();}}

5、终结引用

  • 对象需要被回收时,终结器引用会关联这个对象,并放入Finalizer类的引用队列
  • (无需手动编码,其内部配合引用队列使用)
  • 稍后会由FinalizerThread线程从队列中获取这个对象,并执行它的finalize方法
  • 在这个对象该第二次被回收时,才真正干掉这个对象

总结就是第一次包装一下扔到引用队列+执行finalize方法,第二次GC它时,抬走。根据这个特点,如果在第三步里的finalize方法里给变为null的对象,重新赋一个强引用,岂不是可以让这个对象复活。 Demo:

public class FinalizeReferenceDemo {public static FinalizeReferenceDemo reference = null;/*** 存活性验证*/public void alive() {System.out.println("当前对象还存活...");}@Overrideprotected void finalize() throws Throwable {try {System.out.println("finalize方法执行===");//设置强引用自救reference = this;} finally {super.finalize();}}@SneakyThrowspublic static void test() {reference = null;System.gc();//执行finalize方法的优先级低,这里等一会儿再往下走Thread.sleep(500);if (reference != null) {  //若上面finalize方法执行,则这里不会为null了reference.alive();} else System.out.println("对象已被回收!");}public static void main(String[] args) {reference = new FinalizeReferenceDemo();test();test();}
}

运行结果:

在这里插入图片描述

test方法第一次调用,对象引用被置为null,并手动GC,该被回收了,此时进入引用队列并在稍后执行finalize方法。重写的finalize方法里给引用重新赋值,不为null了,test方法调alive方法发现对象又活了。

接着再第二次调test方法,按理说和第一次调test方法是一个流程,但finalize方法源码有说明:

在这里插入图片描述

即finalize方法最多被同一个JVM调用调用一次,对于一个被放弃的对象。所以第二次调test把引用又置为null并GC后,不会再调finalize方法,因此休眠500ms后,引用依然为null,对象被回收。

这篇关于【基础篇】十三、强软弱虚引用、终结器引用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575440

相关文章

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

MySQL数据类型与表操作全指南( 从基础到高级实践)

《MySQL数据类型与表操作全指南(从基础到高级实践)》本文详解MySQL数据类型分类(数值、日期/时间、字符串)及表操作(创建、修改、维护),涵盖优化技巧如数据类型选择、备份、分区,强调规范设计与... 目录mysql数据类型详解数值类型日期时间类型字符串类型表操作全解析创建表修改表结构添加列修改列删除列

Python 函数详解:从基础语法到高级使用技巧

《Python函数详解:从基础语法到高级使用技巧》本文基于实例代码,全面讲解Python函数的定义、参数传递、变量作用域及类型标注等知识点,帮助初学者快速掌握函数的使用技巧,感兴趣的朋友跟随小编一起... 目录一、函数的基本概念与作用二、函数的定义与调用1. 无参函数2. 带参函数3. 带返回值的函数4.

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

从基础到进阶详解Pandas时间数据处理指南

《从基础到进阶详解Pandas时间数据处理指南》Pandas构建了完整的时间数据处理生态,核心由四个基础类构成,Timestamp,DatetimeIndex,Period和Timedelta,下面我... 目录1. 时间数据类型与基础操作1.1 核心时间对象体系1.2 时间数据生成技巧2. 时间索引与数据