高并发下的计数器实现方式:AtomicLong、LongAdder、LongAccumulator

本文主要是介绍高并发下的计数器实现方式:AtomicLong、LongAdder、LongAccumulator,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图片

一、前言

计数器是并发编程中非常常见的一个需求,例如统计网站的访问量、计算某个操作的执行次数等等。在高并发场景下,如何实现一个线程安全的计数器是一个比较有挑战性的问题。本文将介绍几种常用的计数器实现方式,包括AtomicLong、LongAdder和LongAccumulator,并深入讲解其中的CAS操作。

二、计数器

计数器是一种非常基础的数据结构,用于记录某个事件发生的次数。在并发编程中,由于多个线程可能同时对计数器进行修改,因此需要保证计数器的线程安全性。

三、AtomicLong

AtomicLong是Java中的一个原子类,主要作用是对长整形进行原子操作,保证并发情况下数据的安全性。它实现了一系列线程安全的方法,包括初始化为特定值和以原子方式设置当前值等。

AtomicLong的核心机制是通过CAS(Compare and Swap)操作来确保并发安全性。CAS是一种无锁算法,其核心思想是:如果内存中的值V符合预期值A,则将内存中值修改为B,否则不进行任何操作。整个过程是原子的,不会出现线程安全问题。在高并发环境下,当大量线程同时竞争更新同一个原子变量时,只有一个线程的CAS会成功,其他线程会不断尝试直到成功,这就可能造成大量线程竞争失败后,通过无限循环不断尝试自旋尝试CAS操作,白白浪费了CPU资源。

图片

图里可以看出在高并发情况下,当有大量线程同时去更新一个变量,任意一个时间点只有一个线程能够成功,绝大部分的线程在尝试更新失败后,会通过自旋的方式再次进行尝试,这样严重占用了 CPU 的时间片,进而导致系统性能问题。

多线程并发下AtomicLong实现计数器demo:


import java.util.concurrent.atomic.AtomicLong;public class AtomicLongCounter {
private AtomicLong counter = new AtomicLong(0);public void increment() {
long oldValue, newValue;
do {oldValue = counter.get();newValue = oldValue + 1;} while (!counter.compareAndSet(oldValue, newValue));}public long getCount() {
return counter.get();}public static void main(String[] args) throws InterruptedException {AtomicLongCounter counter = new AtomicLongCounter();
int threadCount = 10;Thread[] threads = new Thread[threadCount];for (int i = 0; i < threadCount; i++) {threads[i] = new Thread(() -> {
for (int j = 0; j < 1000; j++) {counter.increment();}});threads[i].start();}for (int i = 0; i < threadCount; i++) {threads[i].join();}System.out.println("计数器的值:" + counter.getCount());}
}

四、LongAdder

LongAdder是Java 8新增的一个类,主要用于解决高并发下的计数问题。与AtomicLong不同,LongAdder内部采用了分段锁技术,将一个大的计数空间分成若干个小的空间进行累加操作。每个小空间都有一个独立的锁,当多个线程同时对不同的小空间进行累加操作时,它们可以并行执行,从而提高了并发性能。

图片

如图所示,LongAdder 设计思想上,采用分段的方式降低并发冲突的概率。通过维护一个基准值 base 和 Cell 数组。

多线程并发下LongAdder实现计数器demo:


import java.util.concurrent.atomic.LongAdder;public class LongAdderCounter {
private final LongAdder longAdder = new LongAdder();public void increment() {longAdder.increment();}public long getCount() {
return longAdder.sum();}public static void main(String[] args) throws InterruptedException {LongAdderCounter counter = new LongAdderCounter();
int threadCount = 10;Thread[] threads = new Thread[threadCount];for (int i = 0; i < threadCount; i++) {threads[i] = new Thread(() -> {
for (int j = 0; j < 1000; j++) {counter.increment();}});threads[i].start();}for (int i = 0; i < threadCount; i++) {threads[i].join();}System.out.println("计数器的值:" + counter.getCount());}
}

五、LongAccumulator

LongAccumulator是Java 8新增的一个类,用于实现自定义的累加操作。它提供了一种简单而灵活的方式来实现复杂的累加逻辑。LongAccumulator内部维护了一个累加结果和一个标识位,当调用accumulate方法时,会根据标识位的值来决定是否直接返回结果还是进入累加逻辑。这种方式可以有效地避免重复计算和线程竞争问题。


import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.util.LongAccumulator;public class LongAccumulatorCounter {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("LongAccumulatorCounter").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);LongAccumulator longAccumulator = sc.longAccumulator();JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5), 2);rdd.foreachPartition(partition -> {
for (int value : partition) {longAccumulator.add(value);}});System.out.println("累加器的值:" + longAccumulator.value());sc.stop();}
}

六、CAS(Compare and Swap)

CAS 全称:compare and swap,比较并交换。CAS操作是上述三种计数器实现方式的核心机制之一。它通过比较内存中的值和预期值是否相等来判断是否需要进行更新操作。如果相等,则将内存中的值修改为新值;否则不做任何操作。整个过程是原子的,不会出现线程安全问题。但是需要注意的是,在高并发场景下,当多个线程同时竞争同一个原子变量时,可能会出现“ABA”问题。即当一个线程读取了内存中的值A之后,另一个线程将其修改为B再修改为A,此时第一个线程再次读取该变量时会发现它的值仍然是A而不是B。为了解决这个问题,可以使用版本号等方式来解决“ABA”问题,使用Java提供的AtomicStampedReference 类。

七、总结

阿里巴巴推荐使用 LongAdder, 原因主要有以下几点:

高并发性能:LongAdder 采用分段锁的策略,可以避免 AtomicLong 中的竞争问题,提高并发性能。在分布式系统中,高并发性能是非常重要的。

可扩展性:LongAdder 支持可扩展性,可以通过增加更多的段来提高性能。这对于需要处理大量请求的分布式系统来说是非常有利的。

代码简单易懂:虽然LongAdder 的代码相对复杂一些,但是相对于 AtomicLong 来说更容易理解和维护。这对于开发人员来说是非常重要的。

更好的适用场景:阿里巴巴推荐使用 LongAdder 主要是因为在分布式系统中需要一个高性能、高可用的计数器实现。而 LongAdder 正好符合这个需求。

图片

这篇关于高并发下的计数器实现方式:AtomicLong、LongAdder、LongAccumulator的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/575420

相关文章

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

内核启动时减少log的方式

内核引导选项 内核引导选项大体上可以分为两类:一类与设备无关、另一类与设备有关。与设备有关的引导选项多如牛毛,需要你自己阅读内核中的相应驱动程序源码以获取其能够接受的引导选项。比如,如果你想知道可以向 AHA1542 SCSI 驱动程序传递哪些引导选项,那么就查看 drivers/scsi/aha1542.c 文件,一般在前面 100 行注释里就可以找到所接受的引导选项说明。大多数选项是通过"_

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略

Kubernetes PodSecurityPolicy:PSP能实现的5种主要安全策略 1. 特权模式限制2. 宿主机资源隔离3. 用户和组管理4. 权限提升控制5. SELinux配置 💖The Begin💖点点关注,收藏不迷路💖 Kubernetes的PodSecurityPolicy(PSP)是一个关键的安全特性,它在Pod创建之前实施安全策略,确保P

用命令行的方式启动.netcore webapi

用命令行的方式启动.netcore web项目 进入指定的项目文件夹,比如我发布后的代码放在下面文件夹中 在此地址栏中输入“cmd”,打开命令提示符,进入到发布代码目录 命令行启动.netcore项目的命令为:  dotnet 项目启动文件.dll --urls="http://*:对外端口" --ip="本机ip" --port=项目内部端口 例: dotnet Imagine.M

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次