锁重试和续约? Redisson: 不错, 正是在下 (源码解读)

2024-01-05 18:40

本文主要是介绍锁重试和续约? Redisson: 不错, 正是在下 (源码解读),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

♨️本篇文章记录的为Redisson 相关内容,适合在学Java的小白,帮助新手快速上手,也适合复习中,面试中的大佬🙉🙉🙉。
♨️如果文章有什么需要改进的地方还请大佬不吝赐教❤️🧡💛
👨‍🔧 个人主页 : 阿千弟
⚡> 点击这里👉👉👉 : Redis专栏学习

文章目录

    • 🍓为什么使用Redisson
      • 应用场景
      • 问题解决
      • 使用 Redisson 的可重入锁可以解决上述问题。
    • 🍉了解Redisson
      • Redisson 简介
      • 可重入锁
    • 🍅Redisson的锁重入源码解读
      • 废话不多说, 我们直接进入源码
    • 🍊WatchDog续约(续命)源码解读
      • 场景
      • 进入源码
    • 总结
      • 执行流程
      • Redisson分布式锁原理:

🍓为什么使用Redisson

应用场景

请求 a 的锁过期,但其业务还未执行完毕;请求 b 申请到了锁,其也正在处理业务。如果此时两个请求都同时修改了共享的库存数据,那么就又会出现数据不一致的问题,即仍然存在并发问题。在高并发场景下,问题会被无限大。

问题解决

对于该问题,可以采用“锁续约”方式解决

  1. 在当前业务进程开始执行时,fork 出一个子进程,用于启动一个定时任务。
  2. 该定时任务的定时时间小于锁的过期时间,其会定时查看处理当前请求的业务进程的锁是否已被删除。
  3. 如果已被删除,则子进程结束;如果未被删除,说明当前请求的业务还未处理完毕,则将锁的时间重新设置为“原过期时间”。
  4. 这种方式称为锁续约,也称为锁续命。

使用 Redisson 的可重入锁可以解决上述问题。

Redisson 内部使用 Lua 脚本实现了对可重入锁的添加、重入、续约(命)、释放。Redisson需要用户为锁指定一个 key,但无需为锁指定过期时间,因为它有默认过期时间(当然,也可指定)。由于该锁具有“可重入”功能,所以 Redisson 会为该锁生成一个计数器,记录一个线程重入锁的次数。

在这里插入图片描述

🍉了解Redisson

Redisson 简介

在生产中,对于 Redisson 使用最多的场景就是其分布式锁 RLock。当然,RLock 仅仅是Redisson 的线程同步方案之一。Redisson 提供了 8 种线程同步方案,用户可针对不同场景选用不同方案。

需要注意的是,为了避免锁到期但业务逻辑没有执行完毕而引发的多个线程同时访问共享资源的情况发生,Redisson 内部为锁提供了一个监控锁的看门狗 watch dog,其会在锁到期前不断延长锁的到期时间,直到锁被主动释放。即会自动完成“锁续命”。

可重入锁

Redisson 的分布式锁 RLock 是一种可重入锁。当一个线程获取到锁之后,这个线程可以再次获取本对象上的锁,而其他的线程是不可以的。

  • JDK 中的 ReentrantLock 是可重入锁,其是通过 AQS(抽象队列同步器)实现的锁机制
  • synchronized 也是可重入锁,其是通过监视器模式(本质是 OS 的互斥锁)实现的锁机制

🍅Redisson的锁重入源码解读

废话不多说, 我们直接进入源码

在这里插入图片描述

  • waitTime : 获取锁的最大等待时长, 第一次获取锁失败不会立即返回, 而是在等待时间内不断的尝试, 如果这个时间结束了都还没获取成功, 才返回false
  • lease : 锁自动失效释放的时间
  • unit : 时间单位

点进去查看 tryAcquire 发现内部调用的是 tryAcquireAsync

在这里插入图片描述
查看 tryAcquireAsync 内部方法

在这里插入图片描述

查看 tryLockInnerAsync 内部方法

在这里插入图片描述
lua脚本部分执行成功返回的是nil (类似于我们java中的null), 执行失败了反而返回一个结果 : redis.call ( ‘pttl’, KEYS[1] ) 也就是锁的剩余的有效期

执行了pttl命令, KEYS[1]是锁的名称, pttl和ttl效果是类似的, 都是获取key的剩余有效期, 只不过ttl返回的是s为单位, pttl返回的是ms为单位

现在已经拿到了锁的有效期, 我们现在往回倒一步

在这里插入图片描述
把RFuture返回以后, 这里就有回到了这里 get(tryAcquireAsync((wait, leaseTime, threadId))
get方法就是获取阻塞等待RFuther结果, 等待得到的剩余有效期

在这里插入图片描述

这时就回到了这里

在这里插入图片描述

在这里插入图片描述

这里的subscribe就是订阅释放锁的lua脚本中的publish
如果等待结束还没有收到通知就取消订阅, 并返回获取锁失败

在这里插入图片描述
在这里插入图片描述

if (ttl>=0 && ttl < time)
  • ttl小于time(等待时间), 代表在等待之间锁就已经释放了
  • ttl大于time(等待时间), 如果等了time的时间, 经过time的时间,锁还没有被释放, 也就没必要等了

在这里插入图片描述
如果时间还很充足, 就继续while(true)执行上面的代码, 不停的尝试等待,不断的进行这样的循环

这里设计的巧妙之处就在于利用了消息订阅, 信号量的机制, 它不是无休止的这种盲等机制, 也避免了不断的重试, 而是检测到锁被释放才去尝试重新获取, 这对CPU十分的友好

在这里插入图片描述

🍊WatchDog续约(续命)源码解读

场景

Redisson锁重试的问题是解决了, 但是总会发生一些问题, 如果我们的业务阻塞超时了ttl到期了, 别的线程看见我们的ttl到期了, 他重试他就会拿到本该属于我们的锁, 这时候就有安全问题了, 所以该怎么解决?

我们必须确保锁是业务执行完释放的, 而不是因为阻塞而释放的

进入源码

我们再次来看这段代码
在这里插入图片描述

当我们没有设置leaseTime的时候, 也就是leaseTime=-1的时候就用看门狗过期时间来获取锁
watchTimeout默认时间是30s

在这里插入图片描述

当ttlRemainingFuture的异步尝试获取锁完成以后, 先判断执行过程中是否有异常, 如果有异常就直接返回了结束执行.
如果没有发生异常, 则判断ttlRemaining(剩余有效期)是否为空, 为空的话就代表获取锁成功, 执行锁到期续约的核心方法scheduleExpectationRenew

进入scheduleExpectationRenew方法中查看

在这里插入图片描述

这里面的EXPIRATION_RENEWAL_MAP中的key很有意思, 我们进去看一下

在这里插入图片描述
清楚的发现 entryName由 id 和 name 两部分组成
id就是当前的这个连接的id, name 就是 当前锁的名称

在这里插入图片描述

这就好办了, 我们可以这样理解getEntryName获得的就是锁的名称, 而这个EXPIRATION_RENEWAL_MAP是静态的, 那么RedissonLock类的所有实例就都可以看到这个map
而一个RedissonLock类可以创建出很多锁的实例, 每一个锁都会有自己的名字, 那么在这个map中就会有唯一的key也就是getEntryName()与唯一的entry相对应

  • 如果是第一次创建entrymap里放的时候, 这个entry肯定不存在, 所以调用的是putIfAbsent, 这时候往map中放入的就是一个全新的entry, 返回值就是null
  • 如果不是第一次放入,放入的是重入的entry的话, putIfAbsent返回的就是旧的oldEntry

这样做是为了保证同一个锁拿到的永远是同一个entry

下面是更新有效期的方法renewExpectation

internalLockLeaseTime是这样来的
在这里插入图片描述
在这里插入图片描述
这个方法主要开启一段定时任务, 不断的去更新有效期, 定时任务的的时间就是 看门狗时间/3, 也就是10s后刷新有效期

10s后做这样一件事
在这里插入图片描述

刷新有效期
在这里插入图片描述
这段lua脚本重置有效期, 满血复活
在这里插入图片描述
这里实现了递归, 一直调用自己, 这就是锁永不过期的原因

那么问题来了,什么时候释放锁呢?

当然是在释放锁的时候

在这里插入图片描述
在这里插入图片描述

先从map中取出任务, 先移除任务的线程Id, 再取消这个任务, 最后再移除entry
到这里看门狗的流程就已经结束了

总结

执行流程

在这里插入图片描述

Redisson分布式锁原理:

  • 可重入:利用hash结构记录线程id和重入次数
  • 可重试:利用信号量和PubSub功能实现等待、唤醒,获取锁失败的重试机制
  • 超时续约:利用watchDog,每隔一段时间(releaseTime), 重置超时时间

在这里插入图片描述

如果这篇【文章】有帮助到你💖,希望可以给我点个赞👍,创作不易,如果有对Java后端或者对redis感兴趣的朋友,请多多关注💖💖💖
👨‍🔧 个人主页 : 阿千弟

这篇关于锁重试和续约? Redisson: 不错, 正是在下 (源码解读)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/573796

相关文章

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

如何在Visual Studio中调试.NET源码

今天偶然在看别人代码时,发现在他的代码里使用了Any判断List<T>是否为空。 我一般的做法是先判断是否为null,再判断Count。 看了一下Count的源码如下: 1 [__DynamicallyInvokable]2 public int Count3 {4 [__DynamicallyInvokable]5 get

工厂ERP管理系统实现源码(JAVA)

工厂进销存管理系统是一个集采购管理、仓库管理、生产管理和销售管理于一体的综合解决方案。该系统旨在帮助企业优化流程、提高效率、降低成本,并实时掌握各环节的运营状况。 在采购管理方面,系统能够处理采购订单、供应商管理和采购入库等流程,确保采购过程的透明和高效。仓库管理方面,实现库存的精准管理,包括入库、出库、盘点等操作,确保库存数据的准确性和实时性。 生产管理模块则涵盖了生产计划制定、物料需求计划、

Spring 源码解读:自定义实现Bean定义的注册与解析

引言 在Spring框架中,Bean的注册与解析是整个依赖注入流程的核心步骤。通过Bean定义,Spring容器知道如何创建、配置和管理每个Bean实例。本篇文章将通过实现一个简化版的Bean定义注册与解析机制,帮助你理解Spring框架背后的设计逻辑。我们还将对比Spring中的BeanDefinition和BeanDefinitionRegistry,以全面掌握Bean注册和解析的核心原理。

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

red5-server源码

red5-server源码:https://github.com/Red5/red5-server