【2023 · CANN训练营第一季】模型转换与ATC工具的学习

2024-01-05 12:20

本文主要是介绍【2023 · CANN训练营第一季】模型转换与ATC工具的学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【2023 · CANN训练营第一季】模型转换与ATC工具的学习

文档参考:CANN文档社区版: 6.0.RC1.alpha001

一、为什么要使用ATC工具

昇腾张量编译器(Ascend Tensor Compiler,简称ATC)是昇腾CANN架构体系下的模型转换工具

当前昇腾AI处理器以及昇腾AI软件栈是没有办法直接拿比如Caffe,TensorFlow等开源框架网络模型来直接进行推理的,我们需要将开源框架的网络模型转换成Davinci架构专用的模型。

其作用:

1.它可以将开源框架的网络模型(如Caffe、TensorFlow等)以及Ascend IR定义的单算子描述文件转换为昇腾AI处理器支持的离线模型。

2.模型转换过程中,ATC会进行算子调度优化、权重数据重排、内存使用优化等具体操作,对原始的深度学习模型进行进一步的调优,从而满足部署场景下的高性能需求,使其能够高效执行在昇腾AI处理器上。

二、什么是AIPP

AIPP(Artificial Intelligence Pre-Processing)人工智能预处理,用于在AI Core上完成数据预处理,包括改变图像尺寸、色域转换(转换图像格式)、减均值/乘系数(改变图像像素),数据预处理之后再进行真正的模型推理。

AIPP主要用于在AI Core上完成数据预处理,通过AIPP提供的色域转换功能,输出满足要求的图片格式;通过改变图像尺寸中的补边(Padding)功能,输出满足长宽对齐的图片等,AIPP的出现是对DVPP能力的有效补充。

AIPP根据配置方式不同 ,分为静态AIPP和动态AIPP;如果要将原始图片输出为满足推理要求的图片格式,则需要使用色域转换功能;如果要输出固定大小的图片,则需要使用AIPP提供的Crop(抠图)、Padding(补边)功能

三、环境安装与设置

CANN环境安装,可以参考我的【CANN训练营-模型部署入门】【CANN训练营0基础赢满分秘籍】CANN的Ubuntu环境安装

安装好后,根据需要,在原先的环境变量基础上多添加了如下几个环境变量:

export ASCEND_SLOG_PRINT_TO_STDOUT=1
export TE_PARALLEL_COMPILER=2
export DUMP_GE_GRAPH=1
export DUMP_GRAPH_LEVEL=1

1.设置atc运行日志

其中 export ASCEND_SLOG_PRINT_TO_STDOUT=1是设置atc命令执行过程中的打屏环境变量

也可以在atc命令中设置–log参数(此参数不能设置为null),显示相应的日志级别

如果需要把日志重定向到文件,设置好上述的打印日志级别后,将–log参数设置为

atc xxx --log=debug >log.txt

2.开启算子并行编译功能

若网络模型较大,则可以开启算子并行编译

export TE_PARALLEL_COMPILER=xx

TE_PARALLEL_COMPILER的值代表算子编译进程数(配置为整数),取值范围为1~32,默认值为8,当取值大于1时开启算子的并行编译功能。建议不超过:CPU核数*80%/昇腾AI处理器个数

3.设置打印模型转换过程中的各阶段图描述信息

export DUMP_GE_GRAPH=1

其中:

  • 取值为1,全量dump。
  • 取值为2,不含有权重等数据的基本版dump。
  • 取值为3,只显示节点关系的精简版dump。

如果想控制dump图的个数,还可以设置:

export DUMP_GRAPH_LEVEL=1
  • 取值为1,dump所有图。
  • 取值为2,dump除子图外的所有图,默认值为2。
  • 取值为3,dump最后的生成图。

设置上述变量后,在执行atc命令的当前路径会生成如下文件:

  • ge_onnx*.pbtxt:基于ONNX的开源模型描述结构,可以使用Netron等可视化软件打开。
  • ge_proto*.txt:protobuf格式存储的文本文件,该文件可以转成json格式文件方便用户定位问题。该文件与ge_onnx*.pbtxt成对出现,但是比ge_onnx*.pbtxt文件会多string类型的属性信息,用户选择其中一种文件打开即可。

四、模型的导出与转换

我们训练好的模型为pt格式的文件,我们需要先将其转换为onnx的格式,再使用atc工具转换成能使用的om文件

pt转换为onnx

eg:

在yolov5官网下载了一个yolov5s.pt

使用其提供的export.py进行转换

python models/export.py --weights yolov5s.pt --img 640 --batch 1

这个转换过程遇到很多问题,等我有空整理一个问题集及解决方法

onnx转换为om

1.未使能AIPP

直接使用atc命令转换时,发现自己有3个模块找不到,重新安装了一下

使用如下命令安装了一下:

pip install numpy
pip install decorator
pip install sympy

安装完成后,再次进行转换

atc --model yolov5s.onnx --framework 5 --output yolov5s_bs --soc_version Ascend310 --input_format=NCHW --input_shape="images:1,3,640,640" --input_fp16_nodes="images" --output_type=FP16 --optypelist_for_implmode="Sigmoid" --op_select_implmode=high_performance

转换成功如下图:

note:输入的shape要注意写正确,不然会出现如下错误,还有就是,那个输出名字不用自己写.om,输出时工具会自己补全的:

2.使能AIPP

我们在进行C++搭建的模型推理任务时,预处理部分,可以放到AIPP中进行。

我们使用insert_op.cfg:内容如下

aipp_op {aipp_mode: staticinput_format: YUV420SP_U8csc_switch: true# 如果输入的是YVU420SP_U8(NV21)图像,则需要将rbuv_swap_switch参数设置为truerbuv_swap_switch: falserelated_input_rank: 0src_image_size_w: 640src_image_size_h: 640#我准备在推理前就自己使用dvpp预处理把图片处理成想要的形状,因此就不用抠图了crop: falsematrix_r0c0: 298matrix_r0c1: 516matrix_r0c2: 0matrix_r1c0: 298matrix_r1c1: -100matrix_r1c2: -208matrix_r2c0: 298matrix_r2c1: 0matrix_r2c2: 409input_bias_0: 16input_bias_1: 128input_bias_2: 128# 归一化系数需要根据用户模型实际需求配置,如下所取常见值仅作为示例# 归一化系数应用于色域转换和通道交换之后的通道mean_chn_0: 104mean_chn_1: 117mean_chn_2: 123min_chn_0: 0.0min_chn_1: 0.0min_chn_2: 0.0var_reci_chn_0: 1.0var_reci_chn_1: 1.0var_reci_chn_2: 1.0
}

atc命令参数如下:

atc --model yolov5s.onnx --framework 5 --output yolov5s_bs --soc_version Ascend310 --input_format=NCHW --input_shape="images:1,3,640,640" --input_fp16_nodes="images" --output_type=FP16 --optypelist_for_implmode="Sigmoid" --op_select_implmode=high_performance --insert_op_conf=./insert_op.cfg

出现报错:

看样子是进行aipp的type不能是fp16

修改后:

atc --model yolov5s.onnx --framework 5 --output yolov5s_bs --soc_version Ascend310 --input_format=NCHW --input_shape="images:1,3,640,640" --output_type=FP16 --optypelist_for_implmode="Sigmoid" --op_select_implmode=high_performance --insert_op_conf=./insert_op.cfg

这里保留一个疑问,AIPP不能输入fp16进行转换但是这里有个输出参数是–output_type=FP16,这个参数是参考modelZoo中的样例里面的参数,不知道这样是否有问题,等后面在模型推理那块验证时看看是否有错误,有错误再进行修改

结果如下:

上述两种转换都得到了我们的

结语:至此两种转换都成功了,后续我会在我的模型推理部分的笔记中对此模型进行加载推理使用验证。

ps:该文仅是为了记录CANN训练营的学习过程所用,不参与任何商业用途,有任何代码问题可以和我一起讨论修改

这篇关于【2023 · CANN训练营第一季】模型转换与ATC工具的学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572849

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

高效录音转文字:2024年四大工具精选!

在快节奏的工作生活中,能够快速将录音转换成文字是一项非常实用的能力。特别是在需要记录会议纪要、讲座内容或者是采访素材的时候,一款优秀的在线录音转文字工具能派上大用场。以下推荐几个好用的录音转文字工具! 365在线转文字 直达链接:https://www.pdf365.cn/ 365在线转文字是一款提供在线录音转文字服务的工具,它以其高效、便捷的特点受到用户的青睐。用户无需下载安装任何软件,只

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss