嵌入式 线程同步的时候pthread_cond_t要和pthread_mutex_t搭配使用

2024-01-05 12:18

本文主要是介绍嵌入式 线程同步的时候pthread_cond_t要和pthread_mutex_t搭配使用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、互斥锁和条件变量合作示例

pthread_mutex_t count_lock;
pthread_cond_t count_nonzero;
unsigned count = 0;

decrement_count () {
    pthread_mutex_lock (&count_lock);
    while(count==0)
        pthread_cond_wait( &count_nonzero, &count_lock);

    count=count -1;
    pthread_mutex_unlock (&count_lock);
}
 
increment_count(){
    pthread_mutex_lock(&count_lock);
 
    if(count==0)
        pthread_cond_signal(&count_nonzero);
 
    count=count+1;
    pthread_mutex_unlock(&count_lock);
}

decrement_count和increment_count在两个线程A和B中被调用。
正确的情况下,如果decrement_count首先运行,那么A会被阻塞到pthread_cond_wait。随后increment_count运行,它调用pthread_cond_signal唤醒等待条件锁count_nonzero的A线程,但是A线程并不会马上执行,因为它得不到互斥锁count_lock。当B线程执行pthread_mutex_unlock之后A线程才得以继续执行。
 
如果pthread_cond_signal前后没有使用互斥锁count_lock保护,可能的情况是这样。A阻塞到pthread_cond_wait,然后B执行到pthread_cond_signal时候,发生了线程切换,于是A被唤醒,并且发现count依然是0,所以继续阻塞到条件锁count_nonzero上。然后B继续执行,这时候尽管count=1,A永远不会被唤醒了。这样就发生了逻辑错误。
 
当然在这个上下文中,如果把count=count+1放在函数放在pthread_cond_signal之前变成
 
increment_count(){
     count=count+1;
 
    if(count==0)
        pthread_cond_signal(&count_nonzero);
}
 
这样没有问题。但是这种方法并不能保证所有情况下都适用。于是需要用互斥锁保护条件锁相关的变量。也就是说条件锁是用来线程通讯的,但是互斥锁是为了保护这种通讯不会产生逻辑错误,可以正常工作。

条件变量pthread_cond_t怎么用: 

#include <pthread.h> 
#include <stdio.h> 
#include <stdlib.h> 
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;/*初始化互斥锁*/ 
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;/*初始化条件变量*/ 
void *thread1(void *); 
void *thread2(void *); 
int i=1; 
int main(void) 

pthread_t t_a; 
pthread_t t_b; 
pthread_create(&t_a,NULL,thread1,(void *)NULL);/*创建进程t_a*/ 
pthread_create(&t_b,NULL,thread2,(void *)NULL); /*创建进程t_b*/ 
pthread_join(t_a, NULL);/*等待进程t_a结束*/ 
pthread_join(t_b, NULL);/*等待进程t_b结束*/ 
pthread_mutex_destroy(&mutex); 
pthread_cond_destroy(&cond); 
exit(0); 

void *thread1(void *junk) 

for(i=1;i<=6;i++) 

pthread_mutex_lock(&mutex);/*锁住互斥量*/ 
printf("thread1: lock %d/n", __LINE__); 
if(i%3==0){ 
printf("thread1:signal 1 %d/n", __LINE__); 
pthread_cond_signal(&cond);/*条件改变,发送信号,通知t_b进程*/ 
printf("thread1:signal 2 %d/n", __LINE__); 
sleep(1); 

pthread_mutex_unlock(&mutex);/*解锁互斥量*/ 
printf("thread1: unlock %d/n/n", __LINE__); 
sleep(1); 


void *thread2(void *junk) 

while(i<6) 

pthread_mutex_lock(&mutex); 
printf("thread2: lock %d/n", __LINE__); 
if(i%3!=0){ 
printf("thread2: wait 1 %d/n", __LINE__); 
pthread_cond_wait(&cond,&mutex);/*解锁mutex,并等待cond改变*/ 
printf("thread2: wait 2 %d/n", __LINE__); 

pthread_mutex_unlock(&mutex); 
printf("thread2: unlock %d/n/n", __LINE__); 
sleep(1); 


编译: 
[X61@horizon threads]$ gcc thread_cond.c -lpthread -o tcd 
以下是程序运行结果: 
[X61@horizon threads]$ ./tcd 
thread1: lock 30 
thread1: unlock 40 

thread2: lock 52 
thread2: wait 1 55 
thread1: lock 30 
thread1: unlock 40 

thread1: lock 30 
thread1:signal 1 33 
thread1:signal 2 35 
thread1: unlock 40 

thread2: wait 2 57 
thread2: unlock 61 

thread1: lock 30 
thread1: unlock 40 

thread2: lock 52 
thread2: wait 1 55 
thread1: lock 30 
thread1: unlock 40 

thread1: lock 30 
thread1:signal 1 33 
thread1:signal 2 35 
thread1: unlock 40 

thread2: wait 2 57 
thread2: unlock 61 
这里的两个关键函数就在pthread_cond_wait和pthread_cond_signal函数。 
本例中: 

线程一先执行,获得mutex锁,打印,然后释放mutex锁,然后阻塞自己1秒。 

线程二此时和线程一应该是并发的执行 ,这里是一个要点,为什么说是线程此时是并发的执行,因为此时不做任何干涉的话,是没有办法确定是线程一先获得执行还是线程二先获得执行,到底那个线程先获得执行,取决于操作系统的调度,想刻意的让线程2先执行,可以让线程2一出来,先sleep一秒。 
这里并发执行的情况是,线程一先进入循环,然后获得锁,此时估计线程二执行,阻塞在 
pthread_mutex_lock(&mutex); 
这行语句中,直到线程1释放mutex锁 
pthread_mutex_unlock(&mutex);/*解锁互斥量*/ 
然后线程二得已执行,获取metux锁,满足if条件,到pthread_cond_wait (&cond,&mutex);/*等待*/ 
这里的线程二阻塞,不仅仅是等待cond变量发生改变,同时释放mutex锁 ,因为当时看书没有注意,所以这里卡了很久。 
mutex锁释放后,线程1终于获得了mutex锁,得已继续运行,当线程1的if(i%3==0)的条件满足后,通过pthread_cond_signal发送信号,告诉等待cond的变量的线程(这个情景中是线程二),cond条件变量已经发生了改变。 
不过此时线程二并没有立即得到运行 ,因为线程二还在等待mutex锁的释放,所以线程一继续往下走,直到线程一释放mutex锁,线程二才能停止等待,打印语句,然后往下走通过pthread_mutex_unlock(&mutex)释放mutex锁,进入下一个循环。 

这篇关于嵌入式 线程同步的时候pthread_cond_t要和pthread_mutex_t搭配使用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572838

相关文章

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

Spring 框架之Springfox使用详解

《Spring框架之Springfox使用详解》Springfox是Spring框架的API文档工具,集成Swagger规范,自动生成文档并支持多语言/版本,模块化设计便于扩展,但存在版本兼容性、性... 目录核心功能工作原理模块化设计使用示例注意事项优缺点优点缺点总结适用场景建议总结Springfox 是

SQLite3 在嵌入式C环境中存储音频/视频文件的最优方案

《SQLite3在嵌入式C环境中存储音频/视频文件的最优方案》本文探讨了SQLite3在嵌入式C环境中存储音视频文件的优化方案,推荐采用文件路径存储结合元数据管理,兼顾效率与资源限制,小文件可使用B... 目录SQLite3 在嵌入式C环境中存储音频/视频文件的专业方案一、存储策略选择1. 直接存储 vs