在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库

本文主要是介绍在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paddle infer官方目前没有发布基于cuda12的c++库,为此参考https://www.paddlepaddle.org.cn/inference/user_guides/source_compile.html实现cuda12的编译安装,不料博主才边缘好自己的paddle2.6,paddle官方已经发布了cuda12.0的paddle2.6框架。但按照官网教程进行编译是有很多bug需要解决的,故此分享一下经验,避免踩坑。例如在使用paddle infer库时发现某些类的接口设置不合理,可以通过修改源码后自行编译,修改接口权限。
在这里插入图片描述

1、编译前准备

1.1 下载源码

下载源码

git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
git checkout release/2.6

在这里插入图片描述

1.2 安装依赖项

pip install numpy protobuf wheel ninja

1.3 执行cmake命令

执行以下编译命令 ,Visual Studio 16 2019这个根据自己电脑环境进行修改,TENSORRT_ROOT按照自己配置设置,也可以删除该配置项
cmake .. -G "Visual Studio 16 2019" -A x64 -DWITH_GPU=ON -DWITH_TESTING=OFF -DON_INFER=ON -DCMAKE_BUILD_TYPE=Release -DPY_VERSION=3.8

如果本机安装了多个 CUDA,将使用最新安装的 CUDA 版本。若需要指定 CUDA 版本,则需要设置环境变量。先执行以下代码
set CUDA_TOOLKIT_ROOT_DIR=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2 set PATH=%CUDA_TOOLKIT_ROOT_DIR:/=\%\bin;%CUDA_TOOLKIT_ROOT_DIR:/=\%\libnvvp;%PATH%

如果本机安装了多个 Python,将自动使用最新安装的 Python 版本。若需要指定 Python 版本,则需要指定 Python 路径。则需要在cmake命令中添加以下命令
-DPYTHON_EXECUTABLE=C:\Python38\python.exe -DPYTHON_INCLUDE_DIR=C:\Python38\include -DPYTHON_LIBRARY=C:\Python38\libs\python38.lib -DWITH_UNITY_BUILD=ON
除了以上的cuda支持外,编译paddle还有一下支持项,tensorrt、onnxruntime等,具体见下图
在这里插入图片描述

2、编译中问题

2.1 python版本报错

若无以下报错,则忽略该章节

Paddle only support Python version>=3.8 now
在这里插入图片描述
如果确认自己python版本没有任何问题,参考博主的操作,将原来判断版本的代码改成以下形式
在这里插入图片描述
此时,应该会cmake成功,输出信息如下所示
在这里插入图片描述

2.2 vs2019编译

找到以下文件,双击打开
在这里插入图片描述
在vs中将配置项改成以下内容,并在ALL_BUILD处点击右键选生成,此时界面信息如下图所示
在这里插入图片描述

2.3 过程报错一

在这里插入图片描述
解决方案,将生成的common.dll拷贝出来,重新执行一遍编译
在这里插入图片描述

2.4 过程报错二

以下报错是同样是拷贝文件失误,但不清楚具体是怎么导致的
在这里插入图片描述
博主将Paddle/cmake/copyfile.py里的代码改为以下方式:

import glob
import os
import shutil
import sysdef main():src = sys.argv[1]dst = sys.argv[2]try:if os.path.isdir(src):  # copy directorypathList = os.path.split(src)dst = os.path.join(dst, pathList[-1])if not os.path.exists(dst):shutil.copytree(src, dst)print(f"first copy directory: {src} --->>> {dst}")else:shutil.rmtree(dst)shutil.copytree(src, dst)print(f"overwritten copy directory: {src} --->>> {dst}")else:  # copy file, wildcardif not os.path.exists(dst):os.makedirs(dst)srcFiles = glob.glob(src)for srcFile in srcFiles:print(f"copy file: {srcFile} --->>> {dst}")shutil.copy(srcFile, dst)except:print("拷贝失误:=====》",src,dst)raise EOFErrorif __name__ == "__main__":main()

察觉出是 拷贝失误:=====》 C:\Users\Administrator\Paddle\build\paddle\common\common.* C:\Users\Administrator\Paddle\build\paddle_inference_install_dir\paddle\lib
于是手动完成数据拷贝
在这里插入图片描述
并将Paddle/cmake/copyfile.py里的代码改为以下方式,跳过对common.*数据的拷贝。然后重新执行编译

import glob
import os
import shutil
import sysdef main():src = sys.argv[1]dst = sys.argv[2]try:if os.path.isdir(src):  # copy directorypathList = os.path.split(src)dst = os.path.join(dst, pathList[-1])if not os.path.exists(dst):shutil.copytree(src, dst)print(f"first copy directory: {src} --->>> {dst}")else:#shutil.rmtree(dst)#shutil.copytree(src, dst)print(f"overwritten copy directory: {src} --->>> {dst}")else:  # copy file, wildcardif not os.path.exists(dst):os.makedirs(dst)if "common.*" in src:returnsrcFiles = glob.glob(src)for srcFile in srcFiles:shutil.copy(srcFile, dst)print(f"copy file: {srcFile} --->>> {dst}")except:print("拷贝失误:=====》",src,dst)raise EOFErrorif __name__ == "__main__":main()

最终输出如下所示,可见编译成功
在这里插入图片描述

3、编译结果

3.1 python安装包

可以在python终端进入dist目录,然后执行pip install ./paddlepaddle_gpu-0.0.0-cp38-cp38-win_amd64.whl 安装自己编译的paddle
在这里插入图片描述

3.2 c++推理库

paddle/Include目录下包括了使用飞桨预测库需要的头文件,paddle/lib目录下包括了生成的静态库和动态库,third_party目录下包括了预测库依赖的其它库文件。
在这里插入图片描述
具体形式如官网一致

build/paddle_inference_install_dir
├── CMakeCache.txt
├── paddle
│   ├── include
│   │   ├── paddle_anakin_config.h
│   │   ├── paddle_analysis_config.h
│   │   ├── paddle_api.h
│   │   ├── paddle_inference_api.h
│   │   ├── paddle_mkldnn_quantizer_config.h
│   │   └── paddle_pass_builder.h
│   └── lib
│       ├── libpaddle_inference.a (Linux)
│       ├── libpaddle_inference.so (Linux)
│       └── libpaddle_inference.lib (Windows)
├── third_party
│   ├── boost
│   │   └── boost
│   ├── eigen3
│   │   ├── Eigen
│   │   └── unsupported
│   └── install
│       ├── gflags
│       ├── glog
│       ├── mkldnn
│       ├── mklml
│       ├── protobuf
│       ├── xxhash
│       └── zlib
└── version.txt

在使用过程中需要将dll文件的路径添加到系统环境变量中
在这里插入图片描述

这篇关于在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572720

相关文章

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python实现AVIF图片与其他图片格式间的批量转换

《Python实现AVIF图片与其他图片格式间的批量转换》这篇文章主要为大家详细介绍了如何使用Pillow库实现AVIF与其他格式的相互转换,即将AVIF转换为常见的格式,比如JPG或PNG,需要的小... 目录环境配置1.将单个 AVIF 图片转换为 JPG 和 PNG2.批量转换目录下所有 AVIF 图

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

详解如何通过Python批量转换图片为PDF

《详解如何通过Python批量转换图片为PDF》:本文主要介绍如何基于Python+Tkinter开发的图片批量转PDF工具,可以支持批量添加图片,拖拽等操作,感兴趣的小伙伴可以参考一下... 目录1. 概述2. 功能亮点2.1 主要功能2.2 界面设计3. 使用指南3.1 运行环境3.2 使用步骤4. 核

Python 安装和配置flask, flask_cors的图文教程

《Python安装和配置flask,flask_cors的图文教程》:本文主要介绍Python安装和配置flask,flask_cors的图文教程,本文通过图文并茂的形式给大家介绍的非常详细,... 目录一.python安装:二,配置环境变量,三:检查Python安装和环境变量,四:安装flask和flas

使用Python自建轻量级的HTTP调试工具

《使用Python自建轻量级的HTTP调试工具》这篇文章主要为大家详细介绍了如何使用Python自建一个轻量级的HTTP调试工具,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录一、为什么需要自建工具二、核心功能设计三、技术选型四、分步实现五、进阶优化技巧六、使用示例七、性能对比八、扩展方向建

Java调用C++动态库超详细步骤讲解(附源码)

《Java调用C++动态库超详细步骤讲解(附源码)》C语言因其高效和接近硬件的特性,时常会被用在性能要求较高或者需要直接操作硬件的场合,:本文主要介绍Java调用C++动态库的相关资料,文中通过代... 目录一、直接调用C++库第一步:动态库生成(vs2017+qt5.12.10)第二步:Java调用C++

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经