在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库

本文主要是介绍在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

paddle infer官方目前没有发布基于cuda12的c++库,为此参考https://www.paddlepaddle.org.cn/inference/user_guides/source_compile.html实现cuda12的编译安装,不料博主才边缘好自己的paddle2.6,paddle官方已经发布了cuda12.0的paddle2.6框架。但按照官网教程进行编译是有很多bug需要解决的,故此分享一下经验,避免踩坑。例如在使用paddle infer库时发现某些类的接口设置不合理,可以通过修改源码后自行编译,修改接口权限。
在这里插入图片描述

1、编译前准备

1.1 下载源码

下载源码

git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
git checkout release/2.6

在这里插入图片描述

1.2 安装依赖项

pip install numpy protobuf wheel ninja

1.3 执行cmake命令

执行以下编译命令 ,Visual Studio 16 2019这个根据自己电脑环境进行修改,TENSORRT_ROOT按照自己配置设置,也可以删除该配置项
cmake .. -G "Visual Studio 16 2019" -A x64 -DWITH_GPU=ON -DWITH_TESTING=OFF -DON_INFER=ON -DCMAKE_BUILD_TYPE=Release -DPY_VERSION=3.8

如果本机安装了多个 CUDA,将使用最新安装的 CUDA 版本。若需要指定 CUDA 版本,则需要设置环境变量。先执行以下代码
set CUDA_TOOLKIT_ROOT_DIR=C:/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v11.2 set PATH=%CUDA_TOOLKIT_ROOT_DIR:/=\%\bin;%CUDA_TOOLKIT_ROOT_DIR:/=\%\libnvvp;%PATH%

如果本机安装了多个 Python,将自动使用最新安装的 Python 版本。若需要指定 Python 版本,则需要指定 Python 路径。则需要在cmake命令中添加以下命令
-DPYTHON_EXECUTABLE=C:\Python38\python.exe -DPYTHON_INCLUDE_DIR=C:\Python38\include -DPYTHON_LIBRARY=C:\Python38\libs\python38.lib -DWITH_UNITY_BUILD=ON
除了以上的cuda支持外,编译paddle还有一下支持项,tensorrt、onnxruntime等,具体见下图
在这里插入图片描述

2、编译中问题

2.1 python版本报错

若无以下报错,则忽略该章节

Paddle only support Python version>=3.8 now
在这里插入图片描述
如果确认自己python版本没有任何问题,参考博主的操作,将原来判断版本的代码改成以下形式
在这里插入图片描述
此时,应该会cmake成功,输出信息如下所示
在这里插入图片描述

2.2 vs2019编译

找到以下文件,双击打开
在这里插入图片描述
在vs中将配置项改成以下内容,并在ALL_BUILD处点击右键选生成,此时界面信息如下图所示
在这里插入图片描述

2.3 过程报错一

在这里插入图片描述
解决方案,将生成的common.dll拷贝出来,重新执行一遍编译
在这里插入图片描述

2.4 过程报错二

以下报错是同样是拷贝文件失误,但不清楚具体是怎么导致的
在这里插入图片描述
博主将Paddle/cmake/copyfile.py里的代码改为以下方式:

import glob
import os
import shutil
import sysdef main():src = sys.argv[1]dst = sys.argv[2]try:if os.path.isdir(src):  # copy directorypathList = os.path.split(src)dst = os.path.join(dst, pathList[-1])if not os.path.exists(dst):shutil.copytree(src, dst)print(f"first copy directory: {src} --->>> {dst}")else:shutil.rmtree(dst)shutil.copytree(src, dst)print(f"overwritten copy directory: {src} --->>> {dst}")else:  # copy file, wildcardif not os.path.exists(dst):os.makedirs(dst)srcFiles = glob.glob(src)for srcFile in srcFiles:print(f"copy file: {srcFile} --->>> {dst}")shutil.copy(srcFile, dst)except:print("拷贝失误:=====》",src,dst)raise EOFErrorif __name__ == "__main__":main()

察觉出是 拷贝失误:=====》 C:\Users\Administrator\Paddle\build\paddle\common\common.* C:\Users\Administrator\Paddle\build\paddle_inference_install_dir\paddle\lib
于是手动完成数据拷贝
在这里插入图片描述
并将Paddle/cmake/copyfile.py里的代码改为以下方式,跳过对common.*数据的拷贝。然后重新执行编译

import glob
import os
import shutil
import sysdef main():src = sys.argv[1]dst = sys.argv[2]try:if os.path.isdir(src):  # copy directorypathList = os.path.split(src)dst = os.path.join(dst, pathList[-1])if not os.path.exists(dst):shutil.copytree(src, dst)print(f"first copy directory: {src} --->>> {dst}")else:#shutil.rmtree(dst)#shutil.copytree(src, dst)print(f"overwritten copy directory: {src} --->>> {dst}")else:  # copy file, wildcardif not os.path.exists(dst):os.makedirs(dst)if "common.*" in src:returnsrcFiles = glob.glob(src)for srcFile in srcFiles:shutil.copy(srcFile, dst)print(f"copy file: {srcFile} --->>> {dst}")except:print("拷贝失误:=====》",src,dst)raise EOFErrorif __name__ == "__main__":main()

最终输出如下所示,可见编译成功
在这里插入图片描述

3、编译结果

3.1 python安装包

可以在python终端进入dist目录,然后执行pip install ./paddlepaddle_gpu-0.0.0-cp38-cp38-win_amd64.whl 安装自己编译的paddle
在这里插入图片描述

3.2 c++推理库

paddle/Include目录下包括了使用飞桨预测库需要的头文件,paddle/lib目录下包括了生成的静态库和动态库,third_party目录下包括了预测库依赖的其它库文件。
在这里插入图片描述
具体形式如官网一致

build/paddle_inference_install_dir
├── CMakeCache.txt
├── paddle
│   ├── include
│   │   ├── paddle_anakin_config.h
│   │   ├── paddle_analysis_config.h
│   │   ├── paddle_api.h
│   │   ├── paddle_inference_api.h
│   │   ├── paddle_mkldnn_quantizer_config.h
│   │   └── paddle_pass_builder.h
│   └── lib
│       ├── libpaddle_inference.a (Linux)
│       ├── libpaddle_inference.so (Linux)
│       └── libpaddle_inference.lib (Windows)
├── third_party
│   ├── boost
│   │   └── boost
│   ├── eigen3
│   │   ├── Eigen
│   │   └── unsupported
│   └── install
│       ├── gflags
│       ├── glog
│       ├── mkldnn
│       ├── mklml
│       ├── protobuf
│       ├── xxhash
│       └── zlib
└── version.txt

在使用过程中需要将dll文件的路径添加到系统环境变量中
在这里插入图片描述

这篇关于在win10上cuda12+tensorrt8.6+vs2019环境下编译paddle2.6生成python包与c++推理库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572720

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import