单纯形法迭代原理及解的判定

2024-01-05 08:36

本文主要是介绍单纯形法迭代原理及解的判定,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写于:2024年1月4日晚
修改:


基于以下线性规划做分析, max ⁡ z = ∑ j = 1 n c j x j s.t.  { ∑ j = 1 n a i j x j ≤ b i ( i = 1 , 2 , … , m ) x j ≥ 0 ( j = 1 , 2 , … , n ) \begin{aligned} & \max \mathrm{z}=\sum_{j=1}^n c_j x_j \\ & \text { s.t. }\left\{\begin{array}{l} \sum_{j=1}^n a_{i j} x_j \leq b_i(i=1,2, \ldots, m) \\ x_j \geq 0(j=1,2, \ldots, n) \end{array}\right. \end{aligned} maxz=j=1ncjxj s.t. {j=1naijxjbi(i=1,2,,m)xj0(j=1,2,,n)

标准化上述线性规划,得: max ⁡ z = ∑ j = 1 n c j x j s.t.  { ∑ j = 1 n a i j x j + x i ′ = b i ( i = 1 , 2 , … , m ) x j ≥ 0 ( j = 1 , 2 , … , n ) \begin{aligned} & \max \mathrm{z}=\sum_{j=1}^n c_j x_j \\ & \text { s.t. }\left\{\begin{array}{l}\sum_{j=1}^n a_{i j} x_j+x_i^{\prime}=b_i(i=1,2, \ldots, m) \\ x_j \geq 0(j=1,2, \ldots, n)\end{array}\right. \end{aligned} maxz=j=1ncjxj s.t. {j=1naijxj+xi=bi(i=1,2,,m)xj0(j=1,2,,n)

为减少变量数以便于表示,将线性规划调整(主要是将松弛变量用 x i x_i xi 表示,其余变量用 x j x_j xj 表示)为 max ⁡ z = ∑ j = 1 n c j x j s.t.  { ∑ i = 1 m P i x i + ∑ j = m + 1 n P j x j = b x j ≥ 0 ( j = 1 , 2 , … , n ) \begin{aligned} & \max \mathrm{z}=\sum_{j=1}^n c_j x_j \\ & \text { s.t. }\left\{\begin{array}{l} \sum_{i=1}^m \mathbf{P}_i x_i+\sum_{j=m+1}^n \mathbf{P}_j x_j=\mathbf{b} \\ x_j \geq 0(j=1,2, \ldots, n) \end{array}\right. \end{aligned} maxz=j=1ncjxj s.t. {i=1mPixi+j=m+1nPjxj=bxj0(j=1,2,,n)

其中, P i \mathbf{P}_i Pi 为 m 维标准单位列向量, P j = [ a 1 , j a 2 , j … a m , j ] \mathbf{P}_j=\left[\begin{array}{c} a_{1, j} \\ a_{2, j} \\ \ldots \\ a_{m, j} \end{array}\right] Pj= a1,ja2,jam,j P = [ 1 0 … 0 a 1 , m + 1 … a 1 n 0 1 … 0 a 2 , m + 1 … a 2 n … … … 0 a l , m + 1 a l j … 0 0 … 1 a m , m + 1 … a m n ] \mathbf{P}=\left[\begin{array}{cccc:ccc}1 & 0 & \ldots & 0 & a_{1, m+1} & \ldots & a_{1 n} \\ 0 & 1 & \ldots & 0 & a_{2, m+1} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & 0 & a_{l, m+1} & a_{l j} & \ldots \\ 0 & 0 & \ldots & 1 & a_{m, m+1} & \ldots & a_{m n}\end{array}\right] P= 1000100001a1,m+1a2,m+1al,m+1am,m+1alja1na2namn b = [ b 1 b 2 … b m ] \mathbf{b}=\left[\begin{array}{c}b_1 \\ b_2 \\ \ldots \\ b_m\end{array}\right] b= b1b2bm


单纯形法–迭代原理

设初始基变量中前 m \mathrm{m} m 个为基变量,即 X 0 = ( x 1 0 , x 2 0 , … x m 0 , 0 , … , 0 ) T \mathbf{X}^0=\left(x_1^0, x_2^0, \ldots x_m^0, 0, \ldots, 0\right)^{\mathrm{T}} X0=(x10,x20,xm0,0,,0)T

X 0 \mathbf{X}^0 X0 代入约束方程,得到 ∑ i = 1 m P i x i 0 = b \sum_{i=1}^m \mathbf{P}_i x_i^0=\mathbf{b} i=1mPixi0=b P j = ∑ i = 1 m P i a i j ( j = m + 1 , m + 2 , … , n ) \mathbf{P}_j=\sum_{i=1}^m \mathbf{P}_i a_{i j}(j=m+1, m+2, \ldots, n) Pj=i=1mPiaij(j=m+1,m+2,,n)

再令 θ > 0 \theta>0 θ>0 θ ( P j − ∑ i = 1 m P i a i j ) = 0 \theta\left(\mathbf{P}_j-\sum_{i=1}^m \mathbf{P}_i a_{i j}\right)=0 θ(Pji=1mPiaij)=0

∑ i = 1 m P i x i 0 = b \sum_{i=1}^m \mathbf{P}_i x_i^0=\mathbf{b} i=1mPixi0=b θ ( P j = ∑ i = 1 m P i a i j ) = 0 \theta\left(\mathbf{P}_j=\sum_{i=1}^m \mathbf{P}_i a_{i j}\right)=0 θ(Pj=i=1mPiaij)=0 相加,可得 ∑ i = 1 m P i x i 0 + θ ( P j − ∑ i = 1 m P i a i j ) = ∑ i = 1 m ( x i 0 − θ a i j ) P i + θ P j = b \sum_{i=1}^m \mathbf{P}_i x_i^0+\theta\left(\mathbf{P}_j-\sum_{i=1}^m \mathbf{P}_i a_{i j}\right)=\sum_{i=1}^m\left(x_i^0-\theta a_{i j}\right) \mathbf{P}_i+\theta \mathbf{P}_j=\mathbf{b} i=1mPixi0+θ(Pji=1mPiaij)=i=1m(xi0θaij)Pi+θPj=b

即存在 X 1 = ( x 1 1 − θ a l j , x 2 1 − θ a 2 j , … x m 1 − θ a m j , 0 , 0 , … , θ , … , 0 ) T \mathbf{X}^1=\left(x_1^1-\theta a_{l j}, x_2^1-\theta a_{2 j}, \ldots x_m^1-\theta a_{m j}, 0,0, \ldots, \theta, \ldots, 0\right)^{\mathrm{T}} X1=(x11θalj,x21θa2j,xm1θamj,0,0,,θ,,0)T 满足约束 ∑ j = 1 n P j x j = b \sum_{j=1}^n \mathbf{P}_j x_j=\mathbf{b} j=1nPjxj=b

X 1 \mathbf{X}^1 X1 为基可行解,还需满足:所有分量全部大于等于 0;非零分量个数小于等于 m \mathrm{m} m 个。也就是需要使 x i 1 − θ a i j ( i = 1 , 2 , … , m ) x_i^1-\theta a_{i j}(i=1,2, \ldots, m) xi1θaij(i=1,2,,m) 中至少存在一个等于 0,其余均大于 0 。已知 θ > 0 \theta>0 θ>0,若存在一个 a i j > 0 a_{i j}>0 aij>0,且 θ = min ⁡ { x i a i j ∣ a i j > 0 } \theta=\min \left\{\frac{x_i}{a_{i j}} \mid a_{i j}>0\right\} θ=min{aijxiaij>0},即可满足条件。


基于以上分析,单纯形表中迭代解操作为: x l x_l xl 作为换出变量, x j x_j xj 作为换入变量,通过行倍乘化 a l j a_{lj} alj 为 1,再将 P j \mathbf{P}_j Pj 化为标准单位向量。

P = [ 1 0 … 0 0 0 a 1 , m + 1 a 1 , m + 2 … a 1 , j a 1 , n − 1 a 1 , n 0 1 … 0 0 0 a 2 , m + 1 a 2 , m + 2 … a 2 , j a 2 , n − 1 a 2 , n 0 0 … … 0 0 a 3 , m + 1 a 3 , m + 2 … … a 3 , n − 1 a 3 , n … … … 1 … … … … … [ a l j ] … … 0 0 … … 1 0 a m − 1 , m + 1 a m − 1 , m + 2 … … a m − 1 , n − 1 a m − 1 , n 0 0 … 0 0 1 a m , m + 1 a m , m + 2 … a m , j a m , n − 1 a m , n ] ( m ∗ n ) \mathbf{P}=\left[\begin{array}{cccccc:cccccc} 1 & 0 & \ldots & 0 & 0 & 0 & a_{1, m+1} & a_{1, m+2} & \ldots & a_{1, j} & a_{1, n-1} & a_{1, n} \\ 0 & 1 & \ldots & 0 & 0 & 0 & a_{2, m+1} & a_{2, m+2} & \ldots & a_{2, j} & a_{2, n-1} & a_{2, n} \\ 0 & 0 & \ldots & \ldots & 0 & 0 & a_{3, m+1} & a_{3, m+2} & \ldots & \ldots & a_{3, n-1} & a_{3, n} \\ \ldots & \ldots & \ldots & 1 & \ldots & \ldots & \ldots & \ldots & \ldots & {\left[a_{l j}\right]} & \ldots & \ldots \\ 0 & 0 & \ldots & \ldots & 1 & 0 & a_{m-1, m+1} & a_{m-1, m+2} & \ldots & \ldots & a_{m-1, n-1} & a_{m-1, n} \\ 0 & 0 & \ldots & 0 & 0 & 1 & a_{m, m+1} & a_{m, m+2} & \ldots & a_{m, j} & a_{m, n-1} & a_{m, n} \end{array}\right]_{\left(m* n\right)} P= 100000100000100001000001a1,m+1a2,m+1a3,m+1am1,m+1am,m+1a1,m+2a2,m+2a3,m+2am1,m+2am,m+2a1,ja2,j[alj]am,ja1,n1a2,n1a3,n1am1,n1am,n1a1,na2,na3,nam1,nam,n (mn)


单纯形法–最优性检验

检验当前解是否为最优解,若不是确定换入换出变量。

由线性规划可得:

x i = b i − ( a i , m + 1 x m + 1 + a i , m + 2 x m + 2 + … + a i , n x n ) = b i − ∑ j = m + 1 n a i j x j x_i=b_i-\left(a_{i, m+1} x_{m+1}+a_{i, m+2} x_{m+2}+\ldots+a_{i, n} x_n\right)=b_i-\sum_{j=m+1}^n a_{i j} x_j xi=bi(ai,m+1xm+1+ai,m+2xm+2++ai,nxn)=bij=m+1naijxj

z = ∑ j = 1 n c j x j = ∑ i = 1 m c i x i + ∑ j = m + 1 n c j x j = ∑ i = 1 m c i ⋅ ( b i − ∑ j = m + 1 n a i j x j ) + ∑ j = m + 1 n c j x j = ∑ i = 1 m c i b i − ∑ i = 1 m c i ∑ j = m + 1 n a i j x j + ∑ j = m + 1 n c j x j = ∑ i = 1 m c i b i − ∑ j = m + 1 n ( ∑ i = 1 m c i ⋅ a i j x j − c j ⋅ x j ) = ∑ i = 1 m c i b i + ∑ j = m + 1 n ( c j − ∑ i = 1 m c i a i j ) x j \begin{aligned} & z=\sum_{j=1}^n c_j x_j=\sum_{i=1}^m c_i x_i+\sum_{j=m+1}^n c_j x_j=\sum_{i=1}^m c_i \cdot\left(b_i-\sum_{j=m+1}^n a_{i j} x_j\right)+\sum_{j=m+1}^n c_j x_j=\sum_{i=1}^m c_i b_i-\sum_{i=1}^m c_i \sum_{j=m+1}^n a_{i j} x_j+\sum_{j=m+1}^n c_j x_j \\ & =\sum_{i=1}^m c_i b_i-\sum_{j=m+1}^n\left(\sum_{i=1}^m c_i \cdot a_{i j} x_j-c_j \cdot x_j\right)=\sum_{i=1}^m c_i b_i+\sum_{j=m+1}^n\left(c_j-\sum_{i=1}^m c_i a_{i j}\right) x_j \end{aligned} z=j=1ncjxj=i=1mcixi+j=m+1ncjxj=i=1mci(bij=m+1naijxj)+j=m+1ncjxj=i=1mcibii=1mcij=m+1naijxj+j=m+1ncjxj=i=1mcibij=m+1n(i=1mciaijxjcjxj)=i=1mcibi+j=m+1n(cji=1mciaij)xj

z 0 = ∑ i = 1 m c i b i \mathrm{z}_0=\sum_{i=1}^m c_i b_i z0=i=1mcibi z j = ∑ i = 1 m c i a i j z_j=\sum_{i=1}^m c_i a_{i j} zj=i=1mciaij,于是, z = z 0 + ∑ j = m + 1 n ( c j − z j ) x j = z 0 + ∑ j = m + 1 n σ j x j \mathrm{z}=\mathrm{z}_0+\sum_{j=m+1}^n\left(c_j-z_j\right) x_j=z_0+\sum_{j=m+1}^n \sigma_j x_j z=z0+j=m+1n(cjzj)xj=z0+j=m+1nσjxj

根据如下流程图检验解的情况:
在这里插入图片描述

这篇关于单纯形法迭代原理及解的判定的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/572283

相关文章

C++变换迭代器使用方法小结

《C++变换迭代器使用方法小结》本文主要介绍了C++变换迭代器使用方法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录1、源码2、代码解析代码解析:transform_iterator1. transform_iterat

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

Mybatis从3.4.0版本到3.5.7版本的迭代方法实现

《Mybatis从3.4.0版本到3.5.7版本的迭代方法实现》本文主要介绍了Mybatis从3.4.0版本到3.5.7版本的迭代方法实现,包括主要的功能增强、不兼容的更改和修复的错误,具有一定的参考... 目录一、3.4.01、主要的功能增强2、selectCursor example3、不兼容的更改二、

JAVA封装多线程实现的方式及原理

《JAVA封装多线程实现的方式及原理》:本文主要介绍Java中封装多线程的原理和常见方式,通过封装可以简化多线程的使用,提高安全性,并增强代码的可维护性和可扩展性,需要的朋友可以参考下... 目录前言一、封装的目标二、常见的封装方式及原理总结前言在 Java 中,封装多线程的原理主要围绕着将多线程相关的操

kotlin中的模块化结构组件及工作原理

《kotlin中的模块化结构组件及工作原理》本文介绍了Kotlin中模块化结构组件,包括ViewModel、LiveData、Room和Navigation的工作原理和基础使用,本文通过实例代码给大家... 目录ViewModel 工作原理LiveData 工作原理Room 工作原理Navigation 工

Java的volatile和sychronized底层实现原理解析

《Java的volatile和sychronized底层实现原理解析》文章详细介绍了Java中的synchronized和volatile关键字的底层实现原理,包括字节码层面、JVM层面的实现细节,以... 目录1. 概览2. Synchronized2.1 字节码层面2.2 JVM层面2.2.1 ente

MySQL的隐式锁(Implicit Lock)原理实现

《MySQL的隐式锁(ImplicitLock)原理实现》MySQL的InnoDB存储引擎中隐式锁是一种自动管理的锁,用于保证事务在行级别操作时的数据一致性和安全性,本文主要介绍了MySQL的隐式锁... 目录1. 背景:什么是隐式锁?2. 隐式锁的工作原理3. 隐式锁的类型4. 隐式锁的实现与源代码分析4

MySQL中Next-Key Lock底层原理实现

《MySQL中Next-KeyLock底层原理实现》Next-KeyLock是MySQLInnoDB存储引擎中的一种锁机制,结合记录锁和间隙锁,用于高效并发控制并避免幻读,本文主要介绍了MySQL中... 目录一、Next-Key Lock 的定义与作用二、底层原理三、源代码解析四、总结Next-Key L