7+非肿瘤+WGCNA+机器学习+诊断模型,构思巧妙且操作简单

2024-01-04 05:36

本文主要是介绍7+非肿瘤+WGCNA+机器学习+诊断模型,构思巧妙且操作简单,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

今天给同学们分享一篇生信文章“Platelets-related signature based diagnostic model in rheumatoid arthritis using WGCNA and machine learning”,这篇文章发表在Front Immunol期刊上,影响因子为7.3。

51852cfce2efa239227cb158f17de657.jpeg

结果解读:

DEGs和血小板相关基因的鉴定

作者通过R的“GEOquery”和“limma”包,在数据预处理后获得了GSE93272的基因表达矩阵和临床数据。DEG的选择标准为log2|FC|≥1和adj.P≤0.05。(FC,倍数变化;adj.P:调整后的P值)。作者获得了3776个上调的DEG和4714个下调的DEG(图1A)。每个样品中DEG的表达如图1B所示。

a4626b42b8e12cfb4fae2a485e520f72.jpeg


通过WGCNA识别PRS

作者使用样本聚类树来阐明异常值(图1C)。然后,作者通过WGCNA中的“pickSoftThreshold”函数选择软阈值β(图1D),并识别模块(图1C)。软阈值设置为7。作者进一步开发了一个层次聚类树,每个分支代表具有相似表达和生物功能的基因(图1E)。此外,作者通过计算连通度分析了已阐明模块之间的相互作用(图1F)。


模块的富集度分析

作者使用R中的“clusterProfiler”包进行了GO和KEGG分析,以确定与血小板关系最密切的模块,即模块2。随后,作者对模块2进行了GO和KEGG分析,以确定血小板相关途径(图2A)。图2A所示的参与该途径的基因被鉴定为潜在的PRS候选基因。为了更准确地确定血小板相关途径的活性,作者采用了GSEA。具体而言,作者评估了模块2的GOBP血小板活化(图2B)和GOBP血小板聚集(图2C)的活性。

a8656da793e165fdfce1abaa0f75c7b9.jpeg


PRS模型的构建

作者从作为训练组的GSE93272中获得候选PRS的表达数据。然后,作者利用LASSO算法导出系数剖面图(图3A)和部分似然偏差(图3B)。从这些分析中,作者确定了六个非零系数特征,即MAPK3、ACTB、ACTG1、VAV2、PTPN6和ACTN1,用于构建风险评分模型。

2840abd7abd3f9dca29e7cde260e65e9.jpeg


训练和验证队列中诊断潜力的评估

作者通过计算这些队列中每个样本的风险得分,评估了作者的PRS在训练组和验证组中的预测能力(图4A、C)。随后,作者采用ROC分析来确定作者的模型的诊断潜力。训练组和验证组的AUC值分别为0.801(图4B)和0.979(图4D),表明两个队列的诊断准确性都很高。作者还通过R的“modEVA”应用了精度-召回曲线,以进一步评估其效率。为了区分高风险组和低风险组,作者在训练组中使用了9.08的临界值。

2e705e6c3d6e4f2be917ff4d5471ccb9.jpeg


免疫相关状态和基因分析

为了进一步检查与PRS相关的免疫状态,作者使用单样本基因集富集分析(ssGSEA)来分析免疫景观(图5A)。作者的研究结果表明,活化的CD4/8 T细胞、效应记忆CD4 T细胞、嗜酸性粒细胞、γ-ΔT细胞、肥大细胞、髓源性抑制细胞(MDSCs)和浆细胞样树突状细胞在高危组和低危组之间存在显著差异。此外,作者使用GeneMANIA来确定与PRS最密切相关的前20个基因(图5B)。此外,作者检测了PRS的共表达网络,发现其与凝血、凝血和止血有很强的相关性。

76f9cf7a53771006e13e36d5084ae33d.jpeg




总结

总之,虽然作者的研究突出了PRS作为RA诊断工具的潜力,但还需要进一步研究来解决上述限制,并全面评估作者的方法在RA诊断和管理中的临床实用性。

这篇关于7+非肿瘤+WGCNA+机器学习+诊断模型,构思巧妙且操作简单的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/568306

相关文章

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

Python使用DrissionPage中ChromiumPage进行自动化网页操作

《Python使用DrissionPage中ChromiumPage进行自动化网页操作》DrissionPage作为一款轻量级且功能强大的浏览器自动化库,为开发者提供了丰富的功能支持,本文将使用Dri... 目录前言一、ChromiumPage基础操作1.初始化Drission 和 ChromiumPage

利用Go语言开发文件操作工具轻松处理所有文件

《利用Go语言开发文件操作工具轻松处理所有文件》在后端开发中,文件操作是一个非常常见但又容易出错的场景,本文小编要向大家介绍一个强大的Go语言文件操作工具库,它能帮你轻松处理各种文件操作场景... 目录为什么需要这个工具?核心功能详解1. 文件/目录存javascript在性检查2. 批量创建目录3. 文件

如何使用Python实现一个简单的window任务管理器

《如何使用Python实现一个简单的window任务管理器》这篇文章主要为大家详细介绍了如何使用Python实现一个简单的window任务管理器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起... 任务管理器效果图完整代码import tkinter as tkfrom tkinter i

Redis中管道操作pipeline的实现

《Redis中管道操作pipeline的实现》RedisPipeline是一种优化客户端与服务器通信的技术,通过批量发送和接收命令减少网络往返次数,提高命令执行效率,本文就来介绍一下Redis中管道操... 目录什么是pipeline场景一:我要向Redis新增大批量的数据分批处理事务( MULTI/EXE

使用Python高效获取网络数据的操作指南

《使用Python高效获取网络数据的操作指南》网络爬虫是一种自动化程序,用于访问和提取网站上的数据,Python是进行网络爬虫开发的理想语言,拥有丰富的库和工具,使得编写和维护爬虫变得简单高效,本文将... 目录网络爬虫的基本概念常用库介绍安装库Requests和BeautifulSoup爬虫开发发送请求解

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程