tidytextpy包 | 对《三体》进行情感分析

2024-01-04 01:20

本文主要是介绍tidytextpy包 | 对《三体》进行情感分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

腾讯课堂 | Python网络爬虫与文本分析

TidyTextPy

前天我分享了 tidytext | 耳目一新的R-style文本分析库 

但是tidytext不够完善,我在tidytext基础上增加了情感词典,可以进行情感计算,为了区别前者,将其命名为tidytextpy。

大家有时间又有兴趣,可以多接触下R语言,在文本分析及可视化方面,R的能力也不弱。

安装

pip install tidytextpy

实验数据

这里使用中文科幻小说《三体》为例子,含注释共213章,使用正则表达式构建三体小说数据集,该数据集涵

  • chapterid 第几章

  • title 章(节)标题

  • text 每章节的文本内容(分词后以空格间隔的文本,形态类似英文)

import pandas as pd
import jieba
import re
pd.set_option('display.max_rows', 6)raw_texts = open('三体.txt', encoding='utf-8').read()
texts = re.split('第\d+章', raw_texts)
texts = [text for text in texts if text]
#中文多了下面一行代码(构造用空格间隔的字符串)
texts = [' '.join(jieba.lcut(text)) for text in texts if text]
titles = re.findall('第\d+章 (.*?)\n', raw_texts)data = {'chapterid': list(range(1, len(titles)+1)),'title': titles,'text': texts}
df = pd.DataFrame(data)
df

tidytextpy库

  • get_stopwords 停用词表

  • get_sentiments 情感词典

  • unnest_tokens 分词函数

  • bind_tf_idf 计算tf-idf

停用词表

get_stopwords(language) 获取对应语言的停用词表,目前仅支持chinese和english两种语言

from tidytextpy import get_stopwordscn_stps = get_stopwords('chinese')
#前20个中文的停用词
cn_stps[:20]
['、','。','〈','〉','《','》','一','一些','一何','一切','一则','一方面','一旦','一来','一样','一般','一转眼','七','万一','三']
en_stps = get_stopwords()
#前20个英文文的停用词
en_stps[:20]
['i',
'me','my','myself','we','our','ours','ourselves','you','your','yours','yourself','yourselves','he','him','his','himself','she','her','hers']

情感词典

get_sentiments('词典名') 调用词典,返回词典的dataframe数据。

  • afinn sentiment取值-5到5

  • bing sentiment取值为positive或negative

  • nrc sentiment取值为positive或negative,及细粒度的情绪分类信息

  • dutir sentiment为中文七种情绪类别(细粒度情绪分类信息)

  • hownet sentiment为positive或negative

其中hownet和dutir为中文情感词典

from tidytextpy import get_sentiments#大连理工大学情感本体库,共七种情绪(sentiment)
get_sentiments('dutir')

sentimentword
0冷不防
1惊动
2珍闻
.........
27411匆猝
27412忧心仲忡
27413面面厮觑

27414 rows × 2 columns

get_sentiments('nrc')

wordsentiment
0abacustrust
1abandonfear
2abandonnegative
.........
13898zestpositive
13899zesttrust
13900zipnegative

13901 rows × 2 columns

分词

unnest_tokens(__data, output, input)

  • __data 待处理的dataframe数据

  • output 新生成的dataframe中,用于存储分词结果的字段名

  • input 待分词数据的字段名(待处理的dataframe数据)

from tidytextpy import unnest_tokenstokens = unnest_tokens(df, output='word', input='text')
tokens

chapteridtitleword
01科学边界(1)科学
01科学边界(1)边界
01科学边界(1)1
............
212213注释想到
212213注释暗物质
212213注释

556595 rows × 3 columns

各章节用词量

从这里开始会用到plydata的管道符>> 和相关的常用函数,建议大家遇到不懂的地方查阅plydata文档

from plydata import count, group_by, ungroupwordfreq = (df >> unnest_tokens(output='word', input='text') #分词>> group_by('chapterid')  #按章节分组>> count() #对每章用词量进行统计>> ungroup() #去除分组)wordfreq

chapteridn
012549
122666
231726
.........
2102112505
2112122646
2122132477

213 rows × 2 columns

章节用词量可视化

使用plotnine进行可视化

from plotnine import ggplot, aes, theme, geom_line, labs, theme, element_text
from plotnine.options import figure_size(ggplot(wordfreq, aes(x='chapterid', y='n'))+geom_line()+labs(title='三体章节用词量折线图',x='章节', y='用词量')+theme(figure_size=(12, 8),title=element_text(family='Kai', size=15), axis_text_x=element_text(family='Kai'),axis_text_y=element_text(family='Kai'))
)


情感分析

重要的事情多重复一遍o( ̄︶ ̄)o

get_sentiments('词典名') 调用词典,返回词典的dataframe数据。

  • afinn sentiment取值-5到5

  • bing sentiment取值为positive或negative

  • nrc sentiment取值为positive或negative,及细粒度的情绪分类信息

  • dutir sentiment为中文七种情绪类别(细粒度情绪分类信息)

  • hownet sentiment为positive或negative

其中hownet和dutir为中文情感词典

情感计算

这里会用到plydata的很多知识点,大家可以查看https://plydata.readthedocs.io/en/latest/index.html 相关函数的文档。

from plydata import inner_join, count, define, call
from plydata.tidy import spreadchapter_sentiment_score = (df #分词>> unnest_tokens(output='word', input='text') >> inner_join(get_sentiments('hownet')) #让分词结果与hownet词表交集,给每个词分配sentiment>> count('chapterid', 'sentiment')#统计每章中每类sentiment的个数>> spread('sentiment', 'n') #将sentiment中的positive和negative转化为两列>> call('.fillna', 0) #将缺失值替换为0>> define(score = '(positive-negative)/(positive+negative)') #计算每一章的情感分score
)chapter_sentiment_score

chapteridnegativepositivescore
0193.056.0-0.248322
1298.083.0-0.082873
2354.037.0-0.186813
...............
21021156.073.00.131783
21121271.067.0-0.028986
21221375.074.0-0.006711

213 rows × 4 columns

三体小说情感走势

我记得看完《三体》后,很悲观,觉得人类似乎永远逃不过宇宙的时空规律,心情十分压抑。如果对照小说进行章节的情感分析,应该整体情感分的走势大多在0以下。

from plotnine import ggplot, aes, geom_line, element_text, labs, theme(ggplot(chapter_sentiment_score, aes('chapterid', 'score'))+geom_line()+labs(x='章节', y='情感值score', title='《三体》小说情感走势图')+theme(title=element_text(family='Kai'))
)


tf-idf

相比之前的代码,bind_tf_idf运行起来很慢很慢,《三体》数据量大,所以这里用别的数据做实验。

tf-idf实验数据

import pandas as pd
pd.set_option('display.max_rows', 6)zen = """
The Zen of Python, by Tim PetersBeautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
"""zen_split = zen.splitlines()df = pd.DataFrame({'docid': list(range(len(zen_split))),'text': zen_split})df

docidtext
00
11The Zen of Python, by Tim Peters
22
.........
1919If the implementation is hard to explain, it's...
2020If the implementation is easy to explain, it m...
2121Namespaces are one honking great idea -- let's...

22 rows × 2 columns

bind_tf_idf

tf表示词频,idf表示词语在文本中的稀缺性,两者的结合体现了一个词的信息量。找出小说中tf-idf最大的词。

bind_tf_idf(_data, term, document, n)

  • _data 传入的df

  • term df中词语对应的字段名

  • document df中文档id的字段名

  • n df中词频数对应的字段名

from tidytextpy import bind_tf_idf
from plydata import count, group_by, ungrouptfidfs = (df>> unnest_tokens(output='word', input='text')>> count('docid', 'word')>> bind_tf_idf(term='word', document='docid', n='n'))tfidfs

docidwordntfidftf_idf
01the10.1428571.3862940.198042
11zen10.1428572.9957320.427962
21of10.1428571.8971200.271017
.....................
13721more10.0909092.9957320.272339
13821of10.0909091.8971200.172465
13921those10.0909092.9957320.272339

140 rows × 6 columns

近期文章

[更新] Python网络爬虫与文本数据分析 
tidytext | 耳目一新的R-style文本分析库rpy2库 | 在jupyter中调用R语言代码
plydata库 | 数据操作管道操作符>>
plotnine: Python版的ggplot2作图库七夕礼物 | 全网最火的钉子绕线图制作教程读完本文你就了解什么是文本分析文本分析在经管领域中的应用概述  
综述:文本分析在市场营销研究中的应用plotnine: Python版的ggplot2作图库
小案例: Pandas的apply方法  
stylecloud:简洁易用的词云库 
用Python绘制近20年地方财政收入变迁史视频  
Wow~70G上市公司定期报告数据集漂亮~pandas可以无缝衔接Bokeh  
YelpDaset: 酒店管理类数据集10+G  
后台回复关键词【20200822】获取本文代码
  • 分享”和“在看”是更好的支持!


这篇关于tidytextpy包 | 对《三体》进行情感分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567713

相关文章

Linux使用cut进行文本提取的操作方法

《Linux使用cut进行文本提取的操作方法》Linux中的cut命令是一个命令行实用程序,用于从文件或标准输入中提取文本行的部分,本文给大家介绍了Linux使用cut进行文本提取的操作方法,文中有详... 目录简介基础语法常用选项范围选择示例用法-f:字段选择-d:分隔符-c:字符选择-b:字节选择--c

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

Python利用PIL进行图片压缩

《Python利用PIL进行图片压缩》有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所以本文为大家介绍了Python中图片压缩的方法,需要的可以参考下... 有时在发送一些文件如PPT、Word时,由于文件中的图片太大,导致文件也太大,无法发送,所有可以对文件中的图

如何使用Spring boot的@Transactional进行事务管理

《如何使用Springboot的@Transactional进行事务管理》这篇文章介绍了SpringBoot中使用@Transactional注解进行声明式事务管理的详细信息,包括基本用法、核心配置... 目录一、前置条件二、基本用法1. 在方法上添加注解2. 在类上添加注解三、核心配置参数1. 传播行为(