tidytextpy包 | 对《三体》进行情感分析

2024-01-04 01:20

本文主要是介绍tidytextpy包 | 对《三体》进行情感分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

腾讯课堂 | Python网络爬虫与文本分析

TidyTextPy

前天我分享了 tidytext | 耳目一新的R-style文本分析库 

但是tidytext不够完善,我在tidytext基础上增加了情感词典,可以进行情感计算,为了区别前者,将其命名为tidytextpy。

大家有时间又有兴趣,可以多接触下R语言,在文本分析及可视化方面,R的能力也不弱。

安装

pip install tidytextpy

实验数据

这里使用中文科幻小说《三体》为例子,含注释共213章,使用正则表达式构建三体小说数据集,该数据集涵

  • chapterid 第几章

  • title 章(节)标题

  • text 每章节的文本内容(分词后以空格间隔的文本,形态类似英文)

import pandas as pd
import jieba
import re
pd.set_option('display.max_rows', 6)raw_texts = open('三体.txt', encoding='utf-8').read()
texts = re.split('第\d+章', raw_texts)
texts = [text for text in texts if text]
#中文多了下面一行代码(构造用空格间隔的字符串)
texts = [' '.join(jieba.lcut(text)) for text in texts if text]
titles = re.findall('第\d+章 (.*?)\n', raw_texts)data = {'chapterid': list(range(1, len(titles)+1)),'title': titles,'text': texts}
df = pd.DataFrame(data)
df

tidytextpy库

  • get_stopwords 停用词表

  • get_sentiments 情感词典

  • unnest_tokens 分词函数

  • bind_tf_idf 计算tf-idf

停用词表

get_stopwords(language) 获取对应语言的停用词表,目前仅支持chinese和english两种语言

from tidytextpy import get_stopwordscn_stps = get_stopwords('chinese')
#前20个中文的停用词
cn_stps[:20]
['、','。','〈','〉','《','》','一','一些','一何','一切','一则','一方面','一旦','一来','一样','一般','一转眼','七','万一','三']
en_stps = get_stopwords()
#前20个英文文的停用词
en_stps[:20]
['i',
'me','my','myself','we','our','ours','ourselves','you','your','yours','yourself','yourselves','he','him','his','himself','she','her','hers']

情感词典

get_sentiments('词典名') 调用词典,返回词典的dataframe数据。

  • afinn sentiment取值-5到5

  • bing sentiment取值为positive或negative

  • nrc sentiment取值为positive或negative,及细粒度的情绪分类信息

  • dutir sentiment为中文七种情绪类别(细粒度情绪分类信息)

  • hownet sentiment为positive或negative

其中hownet和dutir为中文情感词典

from tidytextpy import get_sentiments#大连理工大学情感本体库,共七种情绪(sentiment)
get_sentiments('dutir')

sentimentword
0冷不防
1惊动
2珍闻
.........
27411匆猝
27412忧心仲忡
27413面面厮觑

27414 rows × 2 columns

get_sentiments('nrc')

wordsentiment
0abacustrust
1abandonfear
2abandonnegative
.........
13898zestpositive
13899zesttrust
13900zipnegative

13901 rows × 2 columns

分词

unnest_tokens(__data, output, input)

  • __data 待处理的dataframe数据

  • output 新生成的dataframe中,用于存储分词结果的字段名

  • input 待分词数据的字段名(待处理的dataframe数据)

from tidytextpy import unnest_tokenstokens = unnest_tokens(df, output='word', input='text')
tokens

chapteridtitleword
01科学边界(1)科学
01科学边界(1)边界
01科学边界(1)1
............
212213注释想到
212213注释暗物质
212213注释

556595 rows × 3 columns

各章节用词量

从这里开始会用到plydata的管道符>> 和相关的常用函数,建议大家遇到不懂的地方查阅plydata文档

from plydata import count, group_by, ungroupwordfreq = (df >> unnest_tokens(output='word', input='text') #分词>> group_by('chapterid')  #按章节分组>> count() #对每章用词量进行统计>> ungroup() #去除分组)wordfreq

chapteridn
012549
122666
231726
.........
2102112505
2112122646
2122132477

213 rows × 2 columns

章节用词量可视化

使用plotnine进行可视化

from plotnine import ggplot, aes, theme, geom_line, labs, theme, element_text
from plotnine.options import figure_size(ggplot(wordfreq, aes(x='chapterid', y='n'))+geom_line()+labs(title='三体章节用词量折线图',x='章节', y='用词量')+theme(figure_size=(12, 8),title=element_text(family='Kai', size=15), axis_text_x=element_text(family='Kai'),axis_text_y=element_text(family='Kai'))
)


情感分析

重要的事情多重复一遍o( ̄︶ ̄)o

get_sentiments('词典名') 调用词典,返回词典的dataframe数据。

  • afinn sentiment取值-5到5

  • bing sentiment取值为positive或negative

  • nrc sentiment取值为positive或negative,及细粒度的情绪分类信息

  • dutir sentiment为中文七种情绪类别(细粒度情绪分类信息)

  • hownet sentiment为positive或negative

其中hownet和dutir为中文情感词典

情感计算

这里会用到plydata的很多知识点,大家可以查看https://plydata.readthedocs.io/en/latest/index.html 相关函数的文档。

from plydata import inner_join, count, define, call
from plydata.tidy import spreadchapter_sentiment_score = (df #分词>> unnest_tokens(output='word', input='text') >> inner_join(get_sentiments('hownet')) #让分词结果与hownet词表交集,给每个词分配sentiment>> count('chapterid', 'sentiment')#统计每章中每类sentiment的个数>> spread('sentiment', 'n') #将sentiment中的positive和negative转化为两列>> call('.fillna', 0) #将缺失值替换为0>> define(score = '(positive-negative)/(positive+negative)') #计算每一章的情感分score
)chapter_sentiment_score

chapteridnegativepositivescore
0193.056.0-0.248322
1298.083.0-0.082873
2354.037.0-0.186813
...............
21021156.073.00.131783
21121271.067.0-0.028986
21221375.074.0-0.006711

213 rows × 4 columns

三体小说情感走势

我记得看完《三体》后,很悲观,觉得人类似乎永远逃不过宇宙的时空规律,心情十分压抑。如果对照小说进行章节的情感分析,应该整体情感分的走势大多在0以下。

from plotnine import ggplot, aes, geom_line, element_text, labs, theme(ggplot(chapter_sentiment_score, aes('chapterid', 'score'))+geom_line()+labs(x='章节', y='情感值score', title='《三体》小说情感走势图')+theme(title=element_text(family='Kai'))
)


tf-idf

相比之前的代码,bind_tf_idf运行起来很慢很慢,《三体》数据量大,所以这里用别的数据做实验。

tf-idf实验数据

import pandas as pd
pd.set_option('display.max_rows', 6)zen = """
The Zen of Python, by Tim PetersBeautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!
"""zen_split = zen.splitlines()df = pd.DataFrame({'docid': list(range(len(zen_split))),'text': zen_split})df

docidtext
00
11The Zen of Python, by Tim Peters
22
.........
1919If the implementation is hard to explain, it's...
2020If the implementation is easy to explain, it m...
2121Namespaces are one honking great idea -- let's...

22 rows × 2 columns

bind_tf_idf

tf表示词频,idf表示词语在文本中的稀缺性,两者的结合体现了一个词的信息量。找出小说中tf-idf最大的词。

bind_tf_idf(_data, term, document, n)

  • _data 传入的df

  • term df中词语对应的字段名

  • document df中文档id的字段名

  • n df中词频数对应的字段名

from tidytextpy import bind_tf_idf
from plydata import count, group_by, ungrouptfidfs = (df>> unnest_tokens(output='word', input='text')>> count('docid', 'word')>> bind_tf_idf(term='word', document='docid', n='n'))tfidfs

docidwordntfidftf_idf
01the10.1428571.3862940.198042
11zen10.1428572.9957320.427962
21of10.1428571.8971200.271017
.....................
13721more10.0909092.9957320.272339
13821of10.0909091.8971200.172465
13921those10.0909092.9957320.272339

140 rows × 6 columns

近期文章

[更新] Python网络爬虫与文本数据分析 
tidytext | 耳目一新的R-style文本分析库rpy2库 | 在jupyter中调用R语言代码
plydata库 | 数据操作管道操作符>>
plotnine: Python版的ggplot2作图库七夕礼物 | 全网最火的钉子绕线图制作教程读完本文你就了解什么是文本分析文本分析在经管领域中的应用概述  
综述:文本分析在市场营销研究中的应用plotnine: Python版的ggplot2作图库
小案例: Pandas的apply方法  
stylecloud:简洁易用的词云库 
用Python绘制近20年地方财政收入变迁史视频  
Wow~70G上市公司定期报告数据集漂亮~pandas可以无缝衔接Bokeh  
YelpDaset: 酒店管理类数据集10+G  
后台回复关键词【20200822】获取本文代码
  • 分享”和“在看”是更好的支持!


这篇关于tidytextpy包 | 对《三体》进行情感分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/567713

相关文章

如何使用celery进行异步处理和定时任务(django)

《如何使用celery进行异步处理和定时任务(django)》文章介绍了Celery的基本概念、安装方法、如何使用Celery进行异步任务处理以及如何设置定时任务,通过Celery,可以在Web应用中... 目录一、celery的作用二、安装celery三、使用celery 异步执行任务四、使用celery

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

SpringBoot使用minio进行文件管理的流程步骤

《SpringBoot使用minio进行文件管理的流程步骤》MinIO是一个高性能的对象存储系统,兼容AmazonS3API,该软件设计用于处理非结构化数据,如图片、视频、日志文件以及备份数据等,本文... 目录一、拉取minio镜像二、创建配置文件和上传文件的目录三、启动容器四、浏览器登录 minio五、

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

python-nmap实现python利用nmap进行扫描分析

《python-nmap实现python利用nmap进行扫描分析》Nmap是一个非常用的网络/端口扫描工具,如果想将nmap集成进你的工具里,可以使用python-nmap这个python库,它提供了... 目录前言python-nmap的基本使用PortScanner扫描PortScannerAsync异

Oracle数据库执行计划的查看与分析技巧

《Oracle数据库执行计划的查看与分析技巧》在Oracle数据库中,执行计划能够帮助我们深入了解SQL语句在数据库内部的执行细节,进而优化查询性能、提升系统效率,执行计划是Oracle数据库优化器为... 目录一、什么是执行计划二、查看执行计划的方法(一)使用 EXPLAIN PLAN 命令(二)通过 S

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi