扩展欧几里得-exgcd

2024-01-03 14:38
文章标签 扩展 欧几里得 exgcd

本文主要是介绍扩展欧几里得-exgcd,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

证明:设 a>b。

  1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2,ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

  上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里德算法的应用主要有以下三方面:

(1)求解不定方程;

(2)求解模线性方程(线性同余方程);

(3)求解模的逆元;

(1)使用扩展欧几里德算法解决不定方程的办法:

对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足:
p = p0 + b/Gcd(p, q) * t
q = q0 - a/Gcd(p, q) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。

在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),

p * a+q * b = c的其他整数解满足:

p = p1 + b/Gcd(a, b) * t
q = q1 - a/Gcd(a, b) * t(其中t为任意整数)
p 、q就是p * a+q * b = c的所有整数解。

bool linear_equation(int a,int b,int c,int &x,int &y){int d=exgcd(a,b,x,y);if(c%d)return false;int k=c/d;x*=k; y*=k;    //求得的只是其中一组解return true;}

(2)用扩展欧几里德算法求解模线性方程的方法:

同余方程 ax≡b (mod n)对于未知数 x 有解,当且仅当 gcd(a,n) | b。且方程有解时,方程有 gcd(a,n) 个解。求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)设 d= gcd(a,n),假如整数 x 和 y,满足 d= ax+ ny(用扩展欧几里德得出)。如果 d| b,则方程a* x0+ n* y0= d, 方程两边乘以 b/ d,(因为 d|b,所以能够整除),得到 a* x0* b/ d+ n* y0* b/ d= b。
所以 x= x0* b/ d,y= y0* b/ d 为 ax+ ny= b 的一个解,所以 x= x0* b/ d 为 ax= b (mod n ) 的解。ax≡b (mod n)的一个解为 x0= x* (b/ d ) mod n,且方程的 d 个解分别为 xi= (x0+ i* (n/ d ))mod n {i= 0... d-1}。设ans=x*(b/d),s=n/d;方程ax≡b (mod n)的最小整数解为:(ans%s+s)%s;相关证明:证明方程有一解是: x0 = x'(b/d) mod n;
由 a*x0 = a*x'(b/d) (mod n)a*x0 = d (b/d) (mod n)   (由于 ax' = d (mod n))= b (mod n)证明方程有d个解: xi = x0 + i*(n/d)  (mod n);
由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n)= (a*x0+a*i*(n/d)) (mod n)= a * x0 (mod n)             (由于 d | a)= b

首先看一个简单的例子:

5x=4(mod3)

解得x = 2,5,8,11,14…….

由此可以发现一个规律,就是解的间隔是3.

那么这个解的间隔是怎么决定的呢?

如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.

我们设解之间的间隔为dx.

那么有

a*x = b(mod n);

a*(x+dx) = b(mod n);

两式相减,得到:

a*dx(mod n)= 0;

也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.

设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.

即a*dx = a*n/d;

所以dx = n/d.

因此解之间的间隔就求出来了.

bool modular_linear_equation(int a,int b,int n){int x,y,x0,i;int d=exgcd(a,n,x,y);if(b%d)return false;x0=x*(b/d)%n;   //特解for(i=1;i<d;i++)printf("%d\n",(x0+i*(n/d))%n);return true;
}

(3)用欧几里德算法求模的逆元:

   同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。这时称求出的 x 为 a 的对模 n 乘法的逆元。对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。

这篇关于扩展欧几里得-exgcd的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/566031

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

最大公因数:欧几里得算法

简述         求两个数字 m和n 的最大公因数,假设r是m%n的余数,只要n不等于0,就一直执行 m=n,n=r 举例 以18和12为例 m n r18 % 12 = 612 % 6 = 06 0所以最大公因数为:6 代码实现 #include<iostream>using namespace std;/

PHP7扩展开发之数组处理

前言 这次,我们将演示如何在PHP扩展中如何对数组进行处理。要实现的PHP代码如下: <?phpfunction array_concat ($arr, $prefix) {foreach($arr as $key => $val) {if (isset($prefix[$key]) && is_string($val) && is_string($prefix[$key])) {$arr[

PHP7扩展开发之字符串处理

前言 这次,我们来看看字符串在PHP扩展里面如何处理。 示例代码如下: <?phpfunction str_concat($prefix, $string) {$len = strlen($prefix);$substr = substr($string, 0, $len);if ($substr != $prefix) {return $prefix." ".$string;} else

PHP7扩展开发之类型处理

前言 这次,我们将演示如何在PHP扩展中如何对类型进行一些操作。如,判断变量类型。要实现的PHP代码如下: <?phpfunction get_size ($value) {if (is_string($value)) {return "string size is ". strlen($value);} else if (is_array($value)) {return "array si

PHP7扩展开发之依赖其他扩展

前言 有的时候,我们的扩展要依赖其他扩展。比如,我们PHP的mysqli扩展就依赖mysqlnd扩展。这中情况下,我们怎么使用其他扩展呢?这个就是本文讲述的内容。 我们新建立一个扩展,名字叫 demo_dep , 依赖之前的say扩展。 在demo_dep扩展中,我们实现demo_say方法。这个方法调用say扩展的say方法。 代码 基础代码 确保say扩展的头文件正确安装到了php

PHP7扩展开发之函数方式使用lib库

前言 首先说下什么是lib库。lib库就是一个提供特定功能的一个文件。可以把它看成是PHP的一个文件,这个文件提供一些函数方法。只是这个lib库是用c或者c++写的。 使用lib库的场景。一些软件已经提供了lib库,我们就没必要再重复实现一次。如,原先的mysql扩展,就是使用mysql官方的lib库进行的封装。 在本文,我们将建立一个简单的lib库,并在扩展中进行封装调用。 代码 基础

PHP7扩展开发之对象方式使用lib库

前言 上一篇文章,我们使用的是函数方式调用lib库。这篇文章我们将使用对象的方式调用lib库。调用代码如下: <?php $hello = new hello(); $result = $hello->get(); var_dump($result); ?> 我们将在扩展中实现hello类。hello类中将依赖lib库。 代码 基础代码 这个扩展,我们将在say扩展上增加相关代码。sa