算法实验T14——POJ 1185炮兵阵地

2024-01-03 09:04

本文主要是介绍算法实验T14——POJ 1185炮兵阵地,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接

思路

        一道非常好的状压DP题。

        首先我们从题目中总结出约束条件:

  •         炮不能安置在山上;
  •         一行内的炮不能相距小于2个距离;
  •         一列的炮不能相距小于2个距离;

        注意到地形图只有山和平原两种状态,可以用 1 和 0 来表示,因此每一行就是一个最多10位的二进制串转化成10进制对应1024种状态。这里我们用1来表示山,更方便后面处理。

        而对于炮兵的安置方案,对于每一个位置,也是放和不放两个状态,我们也可以转化为二进制串,1表示放炮兵。

        以上其实就完成了状态压缩,现在我们可以用串的运算来翻译约束条件,设a[0...n-1]表示每一行的地形状态,设 S、L、LL依次表示第 i 行、第(i - 1)行、第(i - 2)行炮兵安置状态。

        炮兵不能安置在山上,其实就等价翻译为

                        S\ \&\ a[i] = 0

         一行内的炮不能相距小于2个距离,等价翻译为 

                        S \ \& \ (S<<1) = 0 \ \ \&\&\ S \ \& \ (S<<2) = 0

         一列的炮不能相距小于2个距离,等价翻译为

                        S \ \&\ L = 0 \ \& \& \ S \ \&\ LL = 0

        我们发现,如果只考虑前 i 行的话,那么第 i 行的方案仅由其前两行和自身约束,且具有最优子结构,所以我们考虑用DP。

        DP数组DP[0...2^{10}][0...2^{10}][0...n-1]DP[L][S][i]表示上行状态为L,本行状态为S的情况下,前 i 行的最优解。

        那么对于每一行,我们枚举其前两行和当前行的所有符合约束的状态,有状态转移方程DP[L][S][i] = max \{\ DP[LL][L][i-1] + sum[S] \ \},其中sum[S]表示S状态放置了多少个炮兵,其实就是统计该二进制串1的个数。

        最后的答案就是最后一行的倒数第二行的所有状态中DP[L][S][n-1]最大的一个。

        在实现时有两点需要注意:

  1.         DP数组最后一维实际上不需要 n 的大小,只需要3的大小,循环使用即可。
  2.         一定要事先筛选出那些自身满足 “一行内的炮不能相距小于2个距离” 这一条件的状态,用一个数组存下来。因为这个约束和地形、其他行状态都无关,哪些是符合的一开始就是恒定的,如果每次都在循环里面去判断,会重复浪费很多时间,POJ上会TLE。

AC代码

#include<iostream>
#include<cstdio>
using namespace std;
int a[1<<10], dp[1<<10][1<<10][3], sum[1<<10], cddt[1<<10], len_cddt;
int getsum(int x){int cnt = 0;while(x){if(x & 1) cnt++;x >>= 1; }return cnt;
}
int main(){int n, m;char x;scanf("%d%d", &n, &m);for(int i = 0; i < n; i++){for(int j = 0; j < m; j++){cin>>x;a[i] <<= 1; a[i] += (x == 'H' ? 1 : 0); }}for(int i = 0; i < (1 << m); i++){sum[i] = getsum(i);}for(int i = 0; i < (1<<m); i++){if( ( i & (i << 1) ) || ( i & (i << 2) ) )continue;cddt[len_cddt++] = i;}//先将一行内不会互相攻击到的状态筛选出来for(int i = 0; i < len_cddt; i++){if( cddt[i] & a[0] ) continue;dp[0][cddt[i]][0] = sum[cddt[i]];}//初始化第0行for(int i = 0; i < len_cddt; i++){if( cddt[i] & a[0] )continue;for(int j = 0; j < len_cddt; j++){if( ( cddt[j] & a[1] ) || (cddt[i] & cddt[j]) )continue;dp[cddt[i]][cddt[j]][1] = sum[cddt[j]] + sum[cddt[i]];}}//初始化第1行for(int i = 2; i < n; i++){for(int s = 0; s < len_cddt; s++){if( ( cddt[s] & a[i] ) )continue;for(int l = 0; l < len_cddt; l++){if( ( cddt[l] & a[i - 1] ) || ( cddt[l] & cddt[s] ) )continue;for(int ll = 0; ll < len_cddt; ll++){if( ( cddt[ll] & a[i - 2] ) || ( cddt[ll] & cddt[l] ) || ( cddt[ll] & cddt[s] ) )continue;dp[cddt[l]][cddt[s]][i % 3] = max(dp[cddt[l]][cddt[s]][i % 3], dp[cddt[ll]][cddt[l]][(i - 1)%3] + sum[cddt[s]]);}}}}int res = 0;for(int l = 0; l < len_cddt; l++){for(int s = 0; s < len_cddt; s++){res = max(res, dp[cddt[l]][cddt[s]][(n - 1) % 3]);}}printf("%d", res);return 0;
}

这篇关于算法实验T14——POJ 1185炮兵阵地的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/565173

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

poj 1511 Invitation Cards(spfa最短路)

题意是给你点与点之间的距离,求来回到点1的最短路中的边权和。 因为边很大,不能用原来的dijkstra什么的,所以用spfa来做。并且注意要用long long int 来存储。 稍微改了一下学长的模板。 stack stl 实现代码: #include<stdio.h>#include<stack>using namespace std;const int M

poj 3259 uva 558 Wormholes(bellman最短路负权回路判断)

poj 3259: 题意:John的农场里n块地,m条路连接两块地,w个虫洞,虫洞是一条单向路,不但会把你传送到目的地,而且时间会倒退Ts。 任务是求你会不会在从某块地出发后又回来,看到了离开之前的自己。 判断树中是否存在负权回路就ok了。 bellman代码: #include<stdio.h>const int MaxN = 501;//农场数const int