R语言 tidyr包的三个重要函数:gather,spread,separate的用法和举例

2024-01-03 02:58

本文主要是介绍R语言 tidyr包的三个重要函数:gather,spread,separate的用法和举例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

tidyr是Hadley(Tidy Data的作者Hadley Wickham)写的非常有用、并且经常会使用到的包,常与dplyr包结合使用(这个包也是他写的)

准备工作:

首先安装tidyr包(一定要加引号,不然报错)

install.packages("tidyr")

载入tidyr(可以不加引号)

library(tidyr)

gather()

gather函数类似于Excel(2016起)中的数据透视的功能,能把一个变量名含有变量的二维表转换成一个规范的二维表(类似数据库中关系的那种表,具体看例子)

我们先  >?gather,看看官方文档说明:

gather {tidyr}    R Documentation
Gather columns into key-value pairs.

Description

Gather takes multiple columns and collapses into key-value pairs, duplicating all other columns as needed. You use gather() when you notice that you have columns that are not variables.

Usage

gather(data, key = "key", value = "value", ..., na.rm = FALSE,
  convert = FALSE, factor_key = FALSE)
Arguments

data    
A data frame.
key, value    
Names of new key and value columns, as strings or symbols.
This argument is passed by expression and supports quasiquotation (you can unquote strings and symbols). The name is captured from the expression with rlang::ensym() (note that this kind of interface where symbols do not represent actual objects is now discouraged in the tidyverse; we support it here for backward compatibility).
...    (这是一个参数)
A selection of columns. If empty, all variables are selected. You can supply bare variable names, select all variables between x and z with x:z, exclude y with -y. For more options, see the dplyr::select() documentation. See also the section on selection rules below.
na.rm    
If TRUE, will remove rows from output where the value column in NA.
convert    
If TRUE will automatically run type.convert() on the key column. This is useful if the column types are actually numeric, integer, or logical.
factor_key    
If FALSE, the default, the key values will be stored as a character vector. If TRUE, will be stored as a factor, which preserves the original ordering of the columns.

说明:

第一个参数放的是原数据,数据类型要是一个数据框;

下面传一个键值对,名字是自己起的,这两个值是做新转换成的二维表的表头,即两个变量名;

第四个是选中要转置的列,这个参数不写的话就默认全部转置;

后面还可以加可选参数na.rm,如果na.rm = TRUE,那么将会在新表中去除原表中的缺失值(NA)。

gather()举例

先构造一个数据框stu:

stu<-data.frame(grade=c("A","B","C","D","E"), female=c(5, 4, 1, 2, 3), male=c(1, 2, 3, 4, 5))

这个数据框什么意思就不说了,就是你想的那样,成绩-性别的人数分布。

变量中的female和male就是上面所说的变量名中含有了变量,female和male应该是“性别”这个变量的的变量值,下面的人数的变量名(或者说属性名)应该是“人数”,下面我们需要把原grade一列保留,去掉female和male两列,增加sex和count两列,值分别与原表对应起来,使用这个gather函数:

gather(stu, gender, count,-grade)

结果如下,行列就转换过来了,第一个参数是原数据stu,二、三两个参数是键值对(性别,人数),第四个表示减去(除去grade列,就只转置剩下两列)

在原表中单看这两列是这样对应的:

(female, 5), (female, 4), (female, 1), (female, 2), (female, 3)

(male, 1), (male, 2), (male, 3), (male, 4), (male, 5),

就是把原变量名(属性名)做键(key),变量值做值(value)。

接下来就可以继续正常的统计分析了。

separate()

separate负责分割数据,把一个变量中就包含两个变量的数据分来(上例gather中是属性名也是一个变量,一个属性名一个变量),直接上例子:

separate()举例

构造一个新数据框stu2:

stu2<-data.frame(grade=c("A","B","C","D","E"), female_1=c(5, 4, 1, 2, 3), male_1=c(1, 2, 3, 4, 5),female_2=c(4, 5, 1, 2, 3), male_2=c(0, 2, 3, 4, 6))

跟上面stu很像,性别后面的1、2表示班级

我们先用刚才的gather函数转置一下:

stu2_new<-gather(stu2,gender_class,count,-grade)

不解释了,跟上面一样,结果如下:

但这个表仍然不是个规范二维表,我们发现有一列(gender_class)的值包含多个属性(变量),使用separate()分开,separate用法如下:

separate(data, col, into, sep (= 正则表达式), remove =TRUE,convert = FALSE, extra = "warn", fill = "warn", ...)

第一个参数放要分离的数据框;

第二个参数放要分离的列;

第三个参数是分割成的变量的列(肯定是多个),用向量表示;

第四个参数是分隔符,用正则表达式表示,或者写数字,表示从第几位分开(文档里是这样写的:

If character, is interpreted as a regular expression. The default value is a regular expression that matches any sequence of non-alphanumeric values.
If numeric, interpreted as positions to split at. Positive values start at 1 at the far-left of the string; negative value start at -1 at the far-right of the string. The length of sep should be one less than into.)

后面参数就不一一说明了,可以自己看文档

现在我们要做的就是把gender_class这一列分开:

separate(stu2_new,gender_class,c("gender","class"))

注意第三个参数是向量,用c()表示,第四个参数本来应该是"_",这里省略不写了(可能是下划线是默认分隔符?)

结果如下:

spread()

spread用来扩展表,把某一列的值(键值对)分开拆成多列。

spread(data, key, value, fill = NA, convert = FALSE, drop =TRUE, sep = NULL)

key是原来要拆的那一列的名字(变量名),value是拆出来的那些列的值应该填什么(填原表的哪一列)

下面直接上例子

spread()举例

构造数据框stu3:

name<-rep(c("Sally","Jeff","Roger","Karen","Brain"),c(2,2,2,2,2))
test<-rep(c("midterm","final"),5)
class1<-c("A","C",NA,NA,NA,NA,NA,NA,"B","B")
class2<-c(NA,NA,"D","E","C","A",NA,NA,NA,NA)
class3<-c("B","C",NA,NA,NA,NA,"C","C",NA,NA)
class4<-c(NA,NA,"A","C",NA,NA,"A","A",NA,NA)
class5<-c(NA,NA,NA,NA,"B","A",NA,NA,"A","C")
stu3<-data.frame(name,test,class1,class2,class3,class4,class5)

总共5门课,每个学生选两门,列出期中、期末成绩。

显然,原表是不整洁的数据,表头中含有变量(class1-5),所以先用gather函数。注意,这里面有很多缺失值,就可以用到上面所讲的na.rm=TRUE参数,自动去除有缺失值的记录(一条记录就是一行):

如果不写 na.rm=TRUE 的话,结果是这样的:

(未截全)

分析学生没选课的“NA”成绩是没有意义的,所以这个情况下应该舍弃有缺失值的记录。

现在这个表看起来已经很整齐了,但是每个人都有四条记录,其中每门课除了test和grade的值不一样,姓名、课程是一样的,并且很多时候,我们需要分别对期中、期末成绩进行统计分析,那么现在这个表就不利于做分类统计了。

用spread函数将test列分来成midterm和final两列,这两列的值是选的两门课的成绩。

再重复一遍,第二个参数是要拆分的那一列的列名,第三个参数是扩展出的列的值应该来自原表的哪一列的列名。

stu3_new<-gather(stu3, class, grade, class1:class5, na.rm = TRUE)
spread(stu3_new,test,grade)

结果如下:

现在得到非常整齐的仅有10条数据的表,处理起来会更加方便。

最后补充一条,现在class列显得有些冗余,直接用数字似乎更简洁,使用readr包中的parse_number()提出数字(还用到了dplyr的mutate函数),下面放出代码:

install.packages("dplyr")
install.packages("readr")
library(readr)
library(dplyr)
mutate(spread(stu3_new,test,grade),class=parse_number(class))

最终结果:

是不是整整齐齐很好看!!!(*╹▽╹*)

这篇关于R语言 tidyr包的三个重要函数:gather,spread,separate的用法和举例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/564384

相关文章

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Python Faker库基本用法详解

《PythonFaker库基本用法详解》Faker是一个非常强大的库,适用于生成各种类型的伪随机数据,可以帮助开发者在测试、数据生成、或其他需要随机数据的场景中提高效率,本文给大家介绍PythonF... 目录安装基本用法主要功能示例代码语言和地区生成多条假数据自定义字段小结Faker 是一个 python

C/C++错误信息处理的常见方法及函数

《C/C++错误信息处理的常见方法及函数》C/C++是两种广泛使用的编程语言,特别是在系统编程、嵌入式开发以及高性能计算领域,:本文主要介绍C/C++错误信息处理的常见方法及函数,文中通过代码介绍... 目录前言1. errno 和 perror()示例:2. strerror()示例:3. perror(

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

Kotlin 作用域函数apply、let、run、with、also使用指南

《Kotlin作用域函数apply、let、run、with、also使用指南》在Kotlin开发中,作用域函数(ScopeFunctions)是一组能让代码更简洁、更函数式的高阶函数,本文将... 目录一、引言:为什么需要作用域函数?二、作用域函China编程数详解1. apply:对象配置的 “流式构建器”最

MyBatis 动态 SQL 优化之标签的实战与技巧(常见用法)

《MyBatis动态SQL优化之标签的实战与技巧(常见用法)》本文通过详细的示例和实际应用场景,介绍了如何有效利用这些标签来优化MyBatis配置,提升开发效率,确保SQL的高效执行和安全性,感... 目录动态SQL详解一、动态SQL的核心概念1.1 什么是动态SQL?1.2 动态SQL的优点1.3 动态S

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class