seaborn可视化学习之categorial visualization(附数据集)

2024-01-02 16:38

本文主要是介绍seaborn可视化学习之categorial visualization(附数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Seaborn是一个做数据可视化效果很棒的库。在看了官方tutorial之后,尝试用Iris鸢尾花数据集实践一下categorical visualization,也就是数据按类别进行可视化。
首先介绍一下Iris鸢尾花数据集,内容摘自百度百科:Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。“Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类”。

导入库

In [1]:
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

读取数据

In [2]:
iris = pd.read_csv('../input/iris/iris.csv')
iris.head()
Out[2]:
 sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa

数据字段介绍:

  • sepal_length:花萼长度,单位cm
  • sepal_width:花萼宽度,单位cm
  • petal_length:花瓣长度,单位cm
  • petal_width:花瓣宽度,单位cm
  • 种类:setosa(山鸢尾),versicolor(杂色鸢尾),virginica(弗吉尼亚鸢尾)

在做categorical visualization的时候,seaborn给出了基础的stripplot &swarmplotboxplot & violinplotbarplot & pointplot,以及抽象化的factorplot.下面就用纸鸢花数据集做一下讲解。

Stripplot

Stripplot的本质就是把数据集中具有quantitative属性的变量按照类别去做散点图(Scatterplot)。

我们将纸鸢花数据集中不同种类花的sepal length做stripplot可视化

In [3]:
plt.figure(1,figsize=(12,6))plt.subplot(1,2,1)
sns.stripplot(x='species',y='sepal_length',data=iris) #stripplot
plt.title('Striplot of sepal length of Iris species')with sns.axes_style("whitegrid"): # 这个是临时设置样式的命令,如果不写,则按默认格式'darkgrid'进行绘制plt.subplot(1,2,2)plt.title('Striplot of sepal length of Iris species')sns.stripplot(x='species',y='sepal_length',data=iris,jitter=True) # jitterplotplt.show()

上边左侧的图片便是在默认风格下用stripplot绘制的散点图。在很多情况下,stripplot中的点会重叠,使得我们不容易看出点的分布情况。一个简单的解决办法就是用在stripplot的基础上绘制抖动图(jitterplot),仅沿着类别坐标轴的方向去随机微调整点的位置,显示出分布情况。

Swarmplot

另一个解决stripplot中点重叠的办法就是绘制swarmplot,它的本质就是用通过算法,在类别坐标轴的方向上去‘延展’绘制这些原本重合的点。 我们将纸鸢花数据集中不同种类花的petal length和petal width做swarmplot可视化。

In [4]:
plt.figure(1,figsize=(12,6))plt.subplot(1,2,1)
sns.swarmplot(x='species',y='petal_length',data=iris) with sns.axes_style("ticks"): # 这次使用了ticks风格plt.subplot(1,2,2)sns.swarmplot(x='species',y='petal_width',data=iris)plt.show()

Boxplot

箱形图,主要包含六个数据节点,将一组数据从大到小排列,分别计算出上边缘,上四分位数Q3,中位数,下四分位数Q1,下边缘,还有异常值。 下面将纸鸢花数据集中的四个变量sepal_length, sepal_width, petal_length和petal_width做箱形图可视化。

In [5]:
var = ['sepal_length','sepal_width','petal_length','petal_width']
axes_style = ['ticks','white','whitegrid', 'dark']fig = plt.figure(1,figsize=(12,12))for i in range(4):with sns.axes_style(axes_style[i]): # 将除了默认的darkgrid之外的样式都展现一遍plt.subplot(2,2,i+1)sns.boxplot(x='species',y=var[i],data=iris)plt.show()

Violinplot

Violinplot相当于结合了箱形图与核密度图,更好地展现出数据的量化形态。展示如下:

In [6]:
context= ['notebook','paper','talk','poster']
axes_style = ['ticks','white','whitegrid', 'dark']plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i]) # 设置context style,默认为notebook,除此之外还有paper,talk,posterplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.violinplot(x='species',y=var[i],data=iris)plt.show()

Violinplot用kernel density estimate去更好地描述了quantitative变量的分布。
与此同时,也可以组合swarmplot和boxplot或violinplot去描述quantitative变量。用鸢尾花数据集展示如下:

In [7]:
context= ['notebook','paper','talk','poster']
axes_style = ['ticks','white','whitegrid', 'dark']plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i])#设置contextplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.swarmplot(x='species', y=var[i], data=iris, color="w", alpha=.5) sns.violinplot(x='species', y=var[i], data=iris, inner=None) if i%2 ==0 \else sns.boxplot(x='species', y=var[i], data=iris) # 分别用swarmplot+violinplot 和swarmplot + boxplotplt.show()

Barplot

Barplot主要是展现在分类中的quantitative变量的平均值情况,并且用了boostrapping算法计算了估计值的置信区间和error bar.用鸢尾花数据集展示如下:

In [8]:
plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i]) # 设置context style,默认为notebook,除此之外还有paper,talk,posterplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.barplot(x='species',y=var[i],data=iris)
plt.show()

Countplot

如果想知道在每个类别下面有多少个观察值,用countplot就可以,相当于是做一个observation counts,用鸢尾花数据集展示如下:

In [9]:
plt.figure(figsize=(5,5))
sns.countplot(y="species", data=iris) # 设置y='species',将countplot水平放置
plt.title('Iris species count')
plt.show()

Pointplot

Pointplot相当于是对barplot做了一个横向延伸,一方面,用point estimate和confidence level去展示barplot的内容;另一方面,当每一个主类别下面有更细分的sub-category的时候,pointplot可以便于观察不同sub-category在各主类别之间的联系。展示如下:

In [10]:
plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i]) # 设置context style,默认为notebook,除此之外还有paper,talk,posterplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.pointplot(x='species',y=var[i],data=iris)
plt.show()

Factorplot

Factorplot可以说是seaborn做category visualization的精髓,前面讲的这些plot都可以说是factorplot的具体展示。我们可以用PariGrid去实现对多个类别的数值特征用同一种plot做可视化。

In [11]:
sns.set(style="ticks")
g = sns.PairGrid(iris,x_vars = ['sepal_length','sepal_width','petal_length','petal_width'],y_vars = 'species',aspect=0.75,size=4) # 设置间距和图片大小
g.map(sns.violinplot,palette='pastel')
plt.show()

附上各plot function的API,今后将会对API中的参数结合tutorial讲讲,如何做出更好的可视化效果。更新ing

In [12]:
# seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# jitter=False, dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', 
# linewidth=0, ax=None, **kwargs)
In [13]:
# seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)
In [14]:
# seaborn.boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, fliersize=5, l
# inewidth=None, whis=1.5, notch=False, ax=None, **kwargs)
In [15]:
# seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', 
# split=False, dodge=True, orient=None, linewidth=None, color=None, palette=None, 
# saturation=0.75, ax=None, **kwargs)
In [16]:
# seaborn.lvplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, 
# k_depth='proportion', linewidth=None, scale='exponential', outlier_prop=None, ax=None, **kwargs)
In [17]:
# seaborn.pointplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# estimator=<function mean>, ci=95, n_boot=1000, units=None, markers='o', linestyles='-', 
# dodge=False, join=True, scale=1, orient=None, color=None, palette=None, errwidth=None, capsize=None, ax=None, **kwargs)
In [18]:
# seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# estimator=<function mean>, ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, 
# saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)

小结

seaborn是一个很棒的可视化库,尤其是当数据维度很大的时候,seaborn可以让我们用最少的代码去绘制一些描述性统计的图,便于找寻各维度变量之间的特征。此篇文档也是我对seaborn的学习笔记,这次整理的内容是关于category visualization。下次将会选取其他数据集去整理关于distribution visualization的内容。

附数据集:链接:https://pan.baidu.com/s/1jyMAmKPm583q81JnqIA9GA 密码:vqq6

Reference:

  • Seaborn Tutorial
  • Seaborn API Reference

这篇关于seaborn可视化学习之categorial visualization(附数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/563039

相关文章

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

SpringValidation数据校验之约束注解与分组校验方式

《SpringValidation数据校验之约束注解与分组校验方式》本文将深入探讨SpringValidation的核心功能,帮助开发者掌握约束注解的使用技巧和分组校验的高级应用,从而构建更加健壮和可... 目录引言一、Spring Validation基础架构1.1 jsR-380标准与Spring整合1

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

SpringBatch数据写入实现

《SpringBatch数据写入实现》SpringBatch通过ItemWriter接口及其丰富的实现,提供了强大的数据写入能力,本文主要介绍了SpringBatch数据写入实现,具有一定的参考价值,... 目录python引言一、ItemWriter核心概念二、数据库写入实现三、文件写入实现四、多目标写入

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

鸿蒙中Axios数据请求的封装和配置方法

《鸿蒙中Axios数据请求的封装和配置方法》:本文主要介绍鸿蒙中Axios数据请求的封装和配置方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1.配置权限 应用级权限和系统级权限2.配置网络请求的代码3.下载在Entry中 下载AxIOS4.封装Htt

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4