seaborn可视化学习之categorial visualization(附数据集)

2024-01-02 16:38

本文主要是介绍seaborn可视化学习之categorial visualization(附数据集),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Seaborn是一个做数据可视化效果很棒的库。在看了官方tutorial之后,尝试用Iris鸢尾花数据集实践一下categorical visualization,也就是数据按类别进行可视化。
首先介绍一下Iris鸢尾花数据集,内容摘自百度百科:Iris数据集是常用的分类实验数据集,由Fisher, 1936收集整理。“Iris也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类,每类50个数据,每个数据包含4个属性。可通过花萼长度,花萼宽度,花瓣长度,花瓣宽度4个属性预测鸢尾花卉属于(Setosa,Versicolour,Virginica)三个种类中的哪一类”。

导入库

In [1]:
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

读取数据

In [2]:
iris = pd.read_csv('../input/iris/iris.csv')
iris.head()
Out[2]:
 sepal_lengthsepal_widthpetal_lengthpetal_widthspecies
05.13.51.40.2setosa
14.93.01.40.2setosa
24.73.21.30.2setosa
34.63.11.50.2setosa
45.03.61.40.2setosa

数据字段介绍:

  • sepal_length:花萼长度,单位cm
  • sepal_width:花萼宽度,单位cm
  • petal_length:花瓣长度,单位cm
  • petal_width:花瓣宽度,单位cm
  • 种类:setosa(山鸢尾),versicolor(杂色鸢尾),virginica(弗吉尼亚鸢尾)

在做categorical visualization的时候,seaborn给出了基础的stripplot &swarmplotboxplot & violinplotbarplot & pointplot,以及抽象化的factorplot.下面就用纸鸢花数据集做一下讲解。

Stripplot

Stripplot的本质就是把数据集中具有quantitative属性的变量按照类别去做散点图(Scatterplot)。

我们将纸鸢花数据集中不同种类花的sepal length做stripplot可视化

In [3]:
plt.figure(1,figsize=(12,6))plt.subplot(1,2,1)
sns.stripplot(x='species',y='sepal_length',data=iris) #stripplot
plt.title('Striplot of sepal length of Iris species')with sns.axes_style("whitegrid"): # 这个是临时设置样式的命令,如果不写,则按默认格式'darkgrid'进行绘制plt.subplot(1,2,2)plt.title('Striplot of sepal length of Iris species')sns.stripplot(x='species',y='sepal_length',data=iris,jitter=True) # jitterplotplt.show()

上边左侧的图片便是在默认风格下用stripplot绘制的散点图。在很多情况下,stripplot中的点会重叠,使得我们不容易看出点的分布情况。一个简单的解决办法就是用在stripplot的基础上绘制抖动图(jitterplot),仅沿着类别坐标轴的方向去随机微调整点的位置,显示出分布情况。

Swarmplot

另一个解决stripplot中点重叠的办法就是绘制swarmplot,它的本质就是用通过算法,在类别坐标轴的方向上去‘延展’绘制这些原本重合的点。 我们将纸鸢花数据集中不同种类花的petal length和petal width做swarmplot可视化。

In [4]:
plt.figure(1,figsize=(12,6))plt.subplot(1,2,1)
sns.swarmplot(x='species',y='petal_length',data=iris) with sns.axes_style("ticks"): # 这次使用了ticks风格plt.subplot(1,2,2)sns.swarmplot(x='species',y='petal_width',data=iris)plt.show()

Boxplot

箱形图,主要包含六个数据节点,将一组数据从大到小排列,分别计算出上边缘,上四分位数Q3,中位数,下四分位数Q1,下边缘,还有异常值。 下面将纸鸢花数据集中的四个变量sepal_length, sepal_width, petal_length和petal_width做箱形图可视化。

In [5]:
var = ['sepal_length','sepal_width','petal_length','petal_width']
axes_style = ['ticks','white','whitegrid', 'dark']fig = plt.figure(1,figsize=(12,12))for i in range(4):with sns.axes_style(axes_style[i]): # 将除了默认的darkgrid之外的样式都展现一遍plt.subplot(2,2,i+1)sns.boxplot(x='species',y=var[i],data=iris)plt.show()

Violinplot

Violinplot相当于结合了箱形图与核密度图,更好地展现出数据的量化形态。展示如下:

In [6]:
context= ['notebook','paper','talk','poster']
axes_style = ['ticks','white','whitegrid', 'dark']plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i]) # 设置context style,默认为notebook,除此之外还有paper,talk,posterplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.violinplot(x='species',y=var[i],data=iris)plt.show()

Violinplot用kernel density estimate去更好地描述了quantitative变量的分布。
与此同时,也可以组合swarmplot和boxplot或violinplot去描述quantitative变量。用鸢尾花数据集展示如下:

In [7]:
context= ['notebook','paper','talk','poster']
axes_style = ['ticks','white','whitegrid', 'dark']plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i])#设置contextplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.swarmplot(x='species', y=var[i], data=iris, color="w", alpha=.5) sns.violinplot(x='species', y=var[i], data=iris, inner=None) if i%2 ==0 \else sns.boxplot(x='species', y=var[i], data=iris) # 分别用swarmplot+violinplot 和swarmplot + boxplotplt.show()

Barplot

Barplot主要是展现在分类中的quantitative变量的平均值情况,并且用了boostrapping算法计算了估计值的置信区间和error bar.用鸢尾花数据集展示如下:

In [8]:
plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i]) # 设置context style,默认为notebook,除此之外还有paper,talk,posterplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.barplot(x='species',y=var[i],data=iris)
plt.show()

Countplot

如果想知道在每个类别下面有多少个观察值,用countplot就可以,相当于是做一个observation counts,用鸢尾花数据集展示如下:

In [9]:
plt.figure(figsize=(5,5))
sns.countplot(y="species", data=iris) # 设置y='species',将countplot水平放置
plt.title('Iris species count')
plt.show()

Pointplot

Pointplot相当于是对barplot做了一个横向延伸,一方面,用point estimate和confidence level去展示barplot的内容;另一方面,当每一个主类别下面有更细分的sub-category的时候,pointplot可以便于观察不同sub-category在各主类别之间的联系。展示如下:

In [10]:
plt.figure(1,figsize=(12,12))
for i in range(4):with sns.axes_style(axes_style[i]):#设置axes_stylesns.set_context(context[i]) # 设置context style,默认为notebook,除此之外还有paper,talk,posterplt.subplot(2,2,i+1)plt.title(str(var[i])+ ' in Iris species')sns.pointplot(x='species',y=var[i],data=iris)
plt.show()

Factorplot

Factorplot可以说是seaborn做category visualization的精髓,前面讲的这些plot都可以说是factorplot的具体展示。我们可以用PariGrid去实现对多个类别的数值特征用同一种plot做可视化。

In [11]:
sns.set(style="ticks")
g = sns.PairGrid(iris,x_vars = ['sepal_length','sepal_width','petal_length','petal_width'],y_vars = 'species',aspect=0.75,size=4) # 设置间距和图片大小
g.map(sns.violinplot,palette='pastel')
plt.show()

附上各plot function的API,今后将会对API中的参数结合tutorial讲讲,如何做出更好的可视化效果。更新ing

In [12]:
# seaborn.stripplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# jitter=False, dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', 
# linewidth=0, ax=None, **kwargs)
In [13]:
# seaborn.swarmplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# dodge=False, orient=None, color=None, palette=None, size=5, edgecolor='gray', linewidth=0, ax=None, **kwargs)
In [14]:
# seaborn.boxplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, fliersize=5, l
# inewidth=None, whis=1.5, notch=False, ax=None, **kwargs)
In [15]:
# seaborn.violinplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# bw='scott', cut=2, scale='area', scale_hue=True, gridsize=100, width=0.8, inner='box', 
# split=False, dodge=True, orient=None, linewidth=None, color=None, palette=None, 
# saturation=0.75, ax=None, **kwargs)
In [16]:
# seaborn.lvplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# orient=None, color=None, palette=None, saturation=0.75, width=0.8, dodge=True, 
# k_depth='proportion', linewidth=None, scale='exponential', outlier_prop=None, ax=None, **kwargs)
In [17]:
# seaborn.pointplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# estimator=<function mean>, ci=95, n_boot=1000, units=None, markers='o', linestyles='-', 
# dodge=False, join=True, scale=1, orient=None, color=None, palette=None, errwidth=None, capsize=None, ax=None, **kwargs)
In [18]:
# seaborn.barplot(x=None, y=None, hue=None, data=None, order=None, hue_order=None, 
# estimator=<function mean>, ci=95, n_boot=1000, units=None, orient=None, color=None, palette=None, 
# saturation=0.75, errcolor='.26', errwidth=None, capsize=None, dodge=True, ax=None, **kwargs)

小结

seaborn是一个很棒的可视化库,尤其是当数据维度很大的时候,seaborn可以让我们用最少的代码去绘制一些描述性统计的图,便于找寻各维度变量之间的特征。此篇文档也是我对seaborn的学习笔记,这次整理的内容是关于category visualization。下次将会选取其他数据集去整理关于distribution visualization的内容。

附数据集:链接:https://pan.baidu.com/s/1jyMAmKPm583q81JnqIA9GA 密码:vqq6

Reference:

  • Seaborn Tutorial
  • Seaborn API Reference

这篇关于seaborn可视化学习之categorial visualization(附数据集)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/563039

相关文章

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

基于Python开发PDF转PNG的可视化工具

《基于Python开发PDF转PNG的可视化工具》在数字文档处理领域,PDF到图像格式的转换是常见需求,本文介绍如何利用Python的PyMuPDF库和Tkinter框架开发一个带图形界面的PDF转P... 目录一、引言二、功能特性三、技术架构1. 技术栈组成2. 系统架构javascript设计3.效果图

通过ibd文件恢复MySql数据的操作方法

《通过ibd文件恢复MySql数据的操作方法》文章介绍通过.ibd文件恢复MySQL数据的过程,包括知道表结构和不知道表结构两种情况,对于知道表结构的情况,可以直接将.ibd文件复制到新的数据库目录并... 目录第一种情况:知道表结构第二种情况:不知道表结构总结今天干了一件大事,安装1Panel导致原来服务

Jmeter如何向数据库批量插入数据

《Jmeter如何向数据库批量插入数据》:本文主要介绍Jmeter如何向数据库批量插入数据方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Jmeter向数据库批量插入数据Jmeter向mysql数据库中插入数据的入门操作接下来做一下各个元件的配置总结Jmete

MySQL InnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据

《MySQLInnoDB引擎ibdata文件损坏/删除后使用frm和ibd文件恢复数据》mysql的ibdata文件被误删、被恶意修改,没有从库和备份数据的情况下的数据恢复,不能保证数据库所有表数据... 参考:mysql Innodb表空间卸载、迁移、装载的使用方法注意!此方法只适用于innodb_fi

mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据

《mysql通过frm和ibd文件恢复表_mysql5.7根据.frm和.ibd文件恢复表结构和数据》文章主要介绍了如何从.frm和.ibd文件恢复MySQLInnoDB表结构和数据,需要的朋友可以参... 目录一、恢复表结构二、恢复表数据补充方法一、恢复表结构(从 .frm 文件)方法 1:使用 mysq

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

golang获取prometheus数据(prometheus/client_golang包)

《golang获取prometheus数据(prometheus/client_golang包)》本文主要介绍了使用Go语言的prometheus/client_golang包来获取Prometheu... 目录1. 创建链接1.1 语法1.2 完整示例2. 简单查询2.1 语法2.2 完整示例3. 范围值

javaScript在表单提交时获取表单数据的示例代码

《javaScript在表单提交时获取表单数据的示例代码》本文介绍了五种在JavaScript中获取表单数据的方法:使用FormData对象、手动提取表单数据、使用querySelector获取单个字... 方法 1:使用 FormData 对象FormData 是一个方便的内置对象,用于获取表单中的键值