AIStudio扫描王实现与原理详解

2024-01-01 23:30

本文主要是介绍AIStudio扫描王实现与原理详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

★★★ 本文源自AI Studio社区精品项目,【点击此处】查看更多精品内容 >>>


AIStudio扫描王实现与原理详解

一、前言

  大家经常有需要使用扫描件的时候,如果是要求不太高的场景,我们通常会使用手机拍照,再经过一些APP应用的处理,就生成了扫描件。但是,通常会有广告,并且一些功能是收费的,那么我们有没有其他的办法实现这些功能呢?下面本项目将展示如何实现。

二、代码与原理

  只需要将图像加载到相应的代码中,无需任何应用程序即可在几秒钟内获得输出。这个代码可以通过Numpy和OpenCV基本函数来实现。示例图片如图所示。

  首先,我们需要导入库函数;其次使用滤波函数将阴影部分去除;最后输出需要的图像文件。那么什么是图像滤波呢?下面简单介绍一下图片滤波。

  图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性[1]。

  图像滤波按图像域可分为两种类型:

  邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算。一般用于图像平滑、图像锐化、特征提取(如纹理测量、边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子。邻域滤波方式又分为线性滤波和非线性滤波,其中线性滤波包括均值滤波、方框滤波和高斯滤波等,非线性滤波包括中值滤波和双边滤波等。

  频域滤波(Frequency Domain Filter),其本质是对像素频率的修改。一般用于降噪、重采样、图像压缩等。按图像频率滤除效果主要分为两种类型:低通滤波(滤除原图像的高频成分,即模糊图像边缘与细节)和高通滤波(滤除原图像的低频成分,即图像锐化)。

[1]图像滤波参考链接:https://blog.csdn.net/crossoverpptx/article/details/127307179

%matplotlib inlineimport cv2
import numpy as np
import matplotlib.pyplot as plt
2.1 最大滤波

  最大最小值滤波是一种比较保守的图像处理手段,与中值滤波类似,首先要排序周围像素和中心像
素值,然后将中心像素值与最小和最大像素值比较,如果比最小值小,则替换中心像素为最小值,
如果中心像素比最大值大,则替换中心像素为最大值。

  让我们假设我们有一定大小的图像I。我们编写的算法应该逐个遍历I的像素,并且对于每个像素(x,y),它必须找到该像素周围的邻域(大小为N x N的窗口)中的最大灰度值,并进行写入A中相应像素位置(x,y)的最大灰度值。所得图像A称为输入图像I的最大滤波图像。现在让我们通过代码来实现这个概念。

  1. max_filtering()函数接受输入图像和窗口大小N。
  2. 它最初在输入数组周围创建一个“墙”(带有-1的填充),当我们遍历边缘像素时会有所帮助。
  3. 然后,我们创建一个“ temp”变量,将计算出的最大值复制到其中。
  4. 然后,我们遍历该数组并围绕大小为N x N的当前像素创建一个窗口。
  5. 然后,我们使用“ amax()”函数在该窗口中计算最大值,并将该值写入temp数组。
  6. 我们将该临时数组复制到主数组A中,并将其作为输出返回。
  7. A是输入I的最大滤波图像。
def max_filtering(N, I_temp):wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)for y in range(0,wall.shape[0]):for x in range(0,wall.shape[1]):if wall[y,x]!=-1:window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num = np.amax(window)temp[y,x] = numA = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()return A
2.2 最小滤波

  最小滤波:此算法与最大滤波完全相同,但是我们没有找到附近的最大灰度值,而是在该像素周围的N x N邻域中找到了最小值,并将该最小灰度值写入B中的(x,y)。所得图像B称为图像I的经过最小滤波的图像,代码如下。

def min_filtering(N, A):wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)for y in range(0,wall_min.shape[0]):for x in range(0,wall_min.shape[1]):if wall_min[y,x]!=300:window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num_min = np.amin(window_min)temp_min[y,x] = num_minB = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()return B

变量N(用于过滤的窗口大小)将根据图像中粒子或内容的大小进行更改。对于测试图像,选择大小N = 20。增强后的最终输出图像如下所示:

def background_subtraction(I, B):O = I - Bnorm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)return norm_img

完整代码如下所示

%matplotlib inlineimport cv2
import numpy as np
import matplotlib.pyplot as pltdef max_filtering(N, I_temp):wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)for y in range(0,wall.shape[0]):for x in range(0,wall.shape[1]):if wall[y,x]!=-1:window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num = np.amax(window)temp[y,x] = numA = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()return Adef min_filtering(N, A):wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)for y in range(0,wall_min.shape[0]):for x in range(0,wall_min.shape[1]):if wall_min[y,x]!=300:window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num_min = np.amin(window_min)temp_min[y,x] = num_minB = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()return Bdef background_subtraction(I, B):O = I - Bnorm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)return norm_imgdef min_max_filtering(M, N, I):if M == 0:#max_filteringA = max_filtering(N, I)#min_filteringB = min_filtering(N, A)#subtractionnormalised_img = background_subtraction(I, B)elif M == 1:#min_filteringA = min_filtering(N, I)#max_filteringB = max_filtering(N, A)#subtractionnormalised_img = background_subtraction(I, B)return normalised_img
P = cv2.imread('Test_image.jpeg',0)
plt.imshow(P,cmap='gray')
plt.title("original image")
plt.show()

在这里插入图片描述

#We can edit the N and M values here for P and C images
O_P = min_max_filtering(M = 0, N = 20, I = P)#Display final output
plt.imshow(O_P, cmap = 'gray')
plt.title("Final output")
plt.show()

在这里插入图片描述

总结

  进行图片转换时,有两件事要注意。由于图像是灰度图像,如果图像背景较浅且对象较暗,则必须先执行最大滤波,然后再执行最小滤波。如果图像背景较暗且物体较亮,我们可以先执行最小滤波,然后再进行最大滤波。如果图像的背景较浅,我们要先执行最大过滤,这将为我们提供增强的背景,并将该最大过滤后的图像传递给最小过滤功能。

这篇关于AIStudio扫描王实现与原理详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560793

相关文章

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Java中的@SneakyThrows注解用法详解

《Java中的@SneakyThrows注解用法详解》:本文主要介绍Java中的@SneakyThrows注解用法的相关资料,Lombok的@SneakyThrows注解简化了Java方法中的异常... 目录前言一、@SneakyThrows 简介1.1 什么是 Lombok?二、@SneakyThrows

Java中字符串转时间与时间转字符串的操作详解

《Java中字符串转时间与时间转字符串的操作详解》Java的java.time包提供了强大的日期和时间处理功能,通过DateTimeFormatter可以轻松地在日期时间对象和字符串之间进行转换,下面... 目录一、字符串转时间(一)使用预定义格式(二)自定义格式二、时间转字符串(一)使用预定义格式(二)自

Redis Pipeline(管道) 详解

《RedisPipeline(管道)详解》Pipeline管道是Redis提供的一种批量执行命令的机制,通过将多个命令一次性发送到服务器并统一接收响应,减少网络往返次数(RTT),显著提升执行效率... 目录Redis Pipeline 详解1. Pipeline 的核心概念2. 工作原理与性能提升3. 核

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.