AIStudio扫描王实现与原理详解

2024-01-01 23:30

本文主要是介绍AIStudio扫描王实现与原理详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

★★★ 本文源自AI Studio社区精品项目,【点击此处】查看更多精品内容 >>>


AIStudio扫描王实现与原理详解

一、前言

  大家经常有需要使用扫描件的时候,如果是要求不太高的场景,我们通常会使用手机拍照,再经过一些APP应用的处理,就生成了扫描件。但是,通常会有广告,并且一些功能是收费的,那么我们有没有其他的办法实现这些功能呢?下面本项目将展示如何实现。

二、代码与原理

  只需要将图像加载到相应的代码中,无需任何应用程序即可在几秒钟内获得输出。这个代码可以通过Numpy和OpenCV基本函数来实现。示例图片如图所示。

  首先,我们需要导入库函数;其次使用滤波函数将阴影部分去除;最后输出需要的图像文件。那么什么是图像滤波呢?下面简单介绍一下图片滤波。

  图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性[1]。

  图像滤波按图像域可分为两种类型:

  邻域滤波(Spatial Domain Filter),其本质是数字窗口上的数学运算。一般用于图像平滑、图像锐化、特征提取(如纹理测量、边缘检测)等,邻域滤波使用邻域算子——利用给定像素周围像素值以决定此像素最终输出的一种算子。邻域滤波方式又分为线性滤波和非线性滤波,其中线性滤波包括均值滤波、方框滤波和高斯滤波等,非线性滤波包括中值滤波和双边滤波等。

  频域滤波(Frequency Domain Filter),其本质是对像素频率的修改。一般用于降噪、重采样、图像压缩等。按图像频率滤除效果主要分为两种类型:低通滤波(滤除原图像的高频成分,即模糊图像边缘与细节)和高通滤波(滤除原图像的低频成分,即图像锐化)。

[1]图像滤波参考链接:https://blog.csdn.net/crossoverpptx/article/details/127307179

%matplotlib inlineimport cv2
import numpy as np
import matplotlib.pyplot as plt
2.1 最大滤波

  最大最小值滤波是一种比较保守的图像处理手段,与中值滤波类似,首先要排序周围像素和中心像
素值,然后将中心像素值与最小和最大像素值比较,如果比最小值小,则替换中心像素为最小值,
如果中心像素比最大值大,则替换中心像素为最大值。

  让我们假设我们有一定大小的图像I。我们编写的算法应该逐个遍历I的像素,并且对于每个像素(x,y),它必须找到该像素周围的邻域(大小为N x N的窗口)中的最大灰度值,并进行写入A中相应像素位置(x,y)的最大灰度值。所得图像A称为输入图像I的最大滤波图像。现在让我们通过代码来实现这个概念。

  1. max_filtering()函数接受输入图像和窗口大小N。
  2. 它最初在输入数组周围创建一个“墙”(带有-1的填充),当我们遍历边缘像素时会有所帮助。
  3. 然后,我们创建一个“ temp”变量,将计算出的最大值复制到其中。
  4. 然后,我们遍历该数组并围绕大小为N x N的当前像素创建一个窗口。
  5. 然后,我们使用“ amax()”函数在该窗口中计算最大值,并将该值写入temp数组。
  6. 我们将该临时数组复制到主数组A中,并将其作为输出返回。
  7. A是输入I的最大滤波图像。
def max_filtering(N, I_temp):wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)for y in range(0,wall.shape[0]):for x in range(0,wall.shape[1]):if wall[y,x]!=-1:window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num = np.amax(window)temp[y,x] = numA = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()return A
2.2 最小滤波

  最小滤波:此算法与最大滤波完全相同,但是我们没有找到附近的最大灰度值,而是在该像素周围的N x N邻域中找到了最小值,并将该最小灰度值写入B中的(x,y)。所得图像B称为图像I的经过最小滤波的图像,代码如下。

def min_filtering(N, A):wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)for y in range(0,wall_min.shape[0]):for x in range(0,wall_min.shape[1]):if wall_min[y,x]!=300:window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num_min = np.amin(window_min)temp_min[y,x] = num_minB = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()return B

变量N(用于过滤的窗口大小)将根据图像中粒子或内容的大小进行更改。对于测试图像,选择大小N = 20。增强后的最终输出图像如下所示:

def background_subtraction(I, B):O = I - Bnorm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)return norm_img

完整代码如下所示

%matplotlib inlineimport cv2
import numpy as np
import matplotlib.pyplot as pltdef max_filtering(N, I_temp):wall = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)wall[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)] = I_temp.copy()temp = np.full((I_temp.shape[0]+(N//2)*2, I_temp.shape[1]+(N//2)*2), -1)for y in range(0,wall.shape[0]):for x in range(0,wall.shape[1]):if wall[y,x]!=-1:window = wall[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num = np.amax(window)temp[y,x] = numA = temp[(N//2):wall.shape[0]-(N//2), (N//2):wall.shape[1]-(N//2)].copy()return Adef min_filtering(N, A):wall_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)wall_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)] = A.copy()temp_min = np.full((A.shape[0]+(N//2)*2, A.shape[1]+(N//2)*2), 300)for y in range(0,wall_min.shape[0]):for x in range(0,wall_min.shape[1]):if wall_min[y,x]!=300:window_min = wall_min[y-(N//2):y+(N//2)+1,x-(N//2):x+(N//2)+1]num_min = np.amin(window_min)temp_min[y,x] = num_minB = temp_min[(N//2):wall_min.shape[0]-(N//2), (N//2):wall_min.shape[1]-(N//2)].copy()return Bdef background_subtraction(I, B):O = I - Bnorm_img = cv2.normalize(O, None, 0,255, norm_type=cv2.NORM_MINMAX)return norm_imgdef min_max_filtering(M, N, I):if M == 0:#max_filteringA = max_filtering(N, I)#min_filteringB = min_filtering(N, A)#subtractionnormalised_img = background_subtraction(I, B)elif M == 1:#min_filteringA = min_filtering(N, I)#max_filteringB = max_filtering(N, A)#subtractionnormalised_img = background_subtraction(I, B)return normalised_img
P = cv2.imread('Test_image.jpeg',0)
plt.imshow(P,cmap='gray')
plt.title("original image")
plt.show()

在这里插入图片描述

#We can edit the N and M values here for P and C images
O_P = min_max_filtering(M = 0, N = 20, I = P)#Display final output
plt.imshow(O_P, cmap = 'gray')
plt.title("Final output")
plt.show()

在这里插入图片描述

总结

  进行图片转换时,有两件事要注意。由于图像是灰度图像,如果图像背景较浅且对象较暗,则必须先执行最大滤波,然后再执行最小滤波。如果图像背景较暗且物体较亮,我们可以先执行最小滤波,然后再进行最大滤波。如果图像的背景较浅,我们要先执行最大过滤,这将为我们提供增强的背景,并将该最大过滤后的图像传递给最小过滤功能。

这篇关于AIStudio扫描王实现与原理详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/560793

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount