KFold解释和代码实现

2024-01-01 13:52
文章标签 代码 实现 解释 kfold

本文主要是介绍KFold解释和代码实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

KFold解释和代码实现

文章目录

  • 一、KFold是什么?
  • 二、 实验数据设置
    • 2.1 实验数据生成代码
    • 2.2 代码结果
  • 三、实验代码
    • 3.1 实验代码
    • 3.2 实验结果
    • 3.3 结果解释
  • 四、总结


一、KFold是什么?

0,1,2,3:每一行表示测试集和训练集的划分的一种方式。
class:表示类别的个数(下图显示的是3类),有些交叉验证根据类别的比例划分测试集和训练集(例三)。
group:表示从不同的组采集到的样本,颜色的个数表示组的个数(有些时候我们关注在一组特定组上训练的模型是否能很好地泛化到看不见的组)。举个例子(解释“组”的意思):我们有10个人,我们想要希望训练集上所用的数据来自(1,2,3,4,5,6,7,8),测试集上的数据来自(9,10),也就是说我们不希望测试集上的数据和训练集上的数据来自同一个人(如果来自同一个人的话,训练集上的信息泄漏到测试集上了,模型的泛化性能会降低,测试结果会偏好)。
在这里插入图片描述

二、 实验数据设置

2.1 实验数据生成代码

X, y = np.arange(0,60).reshape((30,2)), np.hstack(([0] * 3, [1] * 9, [2] * 18))
print("数据:", end=" ")
for l in X:print(l, end=' ')
print("")
print("标签:", y)

2.2 代码结果

数据: [0 1] [2 3] [4 5] [6 7] [8 9] [10 11] [12 13] [14 15] [16 17] [18 19] [20 21] [22 23] [24 25] [26 27] [28 29] [30 31] [32 33] [34 35] [36 37] [38 39] [40 41] [42 43] [44 45] [46 47] [48 49] [50 51] [52 53] [54 55] [56 57] [58 59] 
标签: [0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]

数据个数、标签个数:30个
类别个数:3个(分别是0,1,2,比例是0.1:0.3:0.6和class每类对应)
组别(group):由于KFold交叉验证结果和group无关,所以这里不再设置(其实也和class无关,但是我们要通过类别观察实验现象,所以进行了设置)。

三、实验代码

3.1 实验代码

代码如下:

from sklearn.model_selection import StratifiedKFold, KFold
import numpy as np
# X, y = np.ones((30, 1)), np.hstack(([0] * 20, [1] * 10))
# print(np.arange(0,30).reshape((30,1)))
X, y = np.arange(0,60).reshape((30,2)), np.hstack(([0] * 3, [1] * 9, [2] * 18))
print("数据:", end=" ")
for l in X:print(l, end=' ')
print("")
print("标签:", y)
kf = KFold(n_splits=3)
for i,(train, test) in enumerate(kf.split(X)):print("=================KFold 第%d折叠 ===================="% (i+1))print('train -  {}'.format(np.bincount(y[train])))print("  训练集索引:%s" % train)print("  训练集标签:", y[train])print("  训练集数据:", end=" ")for l in X[train]:print(l, end=' ')print("")# print("  训练集数据:", X[train])print("test  -  {}".format(np.bincount(y[test])))print("  测试集索引:%s" % test)print("  测试集标签:", y[test])print("  测试集数据:", end=" ")for l in X[test]:print(l, end=' ')print("")# print("  测试集数据:", X[test])print("=============================================================")

3.2 实验结果

结果如下:

数据: [0 1] [2 3] [4 5] [6 7] [8 9] [10 11] [12 13] [14 15] [16 17] [18 19] [20 21] [22 23] [24 25] [26 27] [28 29] [30 31] [32 33] [34 35] [36 37] [38 39] [40 41] [42 43] [44 45] [46 47] [48 49] [50 51] [52 53] [54 55] [56 57] [58 59] 
标签: [0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]
=================KFold 第1折叠 ====================
train -  [ 0  2 18]训练集索引:[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29]训练集标签: [1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]训练集数据: [20 21] [22 23] [24 25] [26 27] [28 29] [30 31] [32 33] [34 35] [36 37] [38 39] [40 41] [42 43] [44 45] [46 47] [48 49] [50 51] [52 53] [54 55] [56 57] [58 59] 
test  -  [3 7]测试集索引:[0 1 2 3 4 5 6 7 8 9]测试集标签: [0 0 0 1 1 1 1 1 1 1]测试集数据: [0 1] [2 3] [4 5] [6 7] [8 9] [10 11] [12 13] [14 15] [16 17] [18 19] 
=============================================================
=================KFold 第2折叠 ====================
train -  [ 3  7 10]训练集索引:[ 0  1  2  3  4  5  6  7  8  9 20 21 22 23 24 25 26 27 28 29]训练集标签: [0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2]训练集数据: [0 1] [2 3] [4 5] [6 7] [8 9] [10 11] [12 13] [14 15] [16 17] [18 19] [40 41] [42 43] [44 45] [46 47] [48 49] [50 51] [52 53] [54 55] [56 57] [58 59] 
test  -  [0 2 8]测试集索引:[10 11 12 13 14 15 16 17 18 19]测试集标签: [1 1 2 2 2 2 2 2 2 2]测试集数据: [20 21] [22 23] [24 25] [26 27] [28 29] [30 31] [32 33] [34 35] [36 37] [38 39] 
=============================================================
=================KFold 第3折叠 ====================
train -  [3 9 8]训练集索引:[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]训练集标签: [0 0 0 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2]训练集数据: [0 1] [2 3] [4 5] [6 7] [8 9] [10 11] [12 13] [14 15] [16 17] [18 19] [20 21] [22 23] [24 25] [26 27] [28 29] [30 31] [32 33] [34 35] [36 37] [38 39] 
test  -  [ 0  0 10]测试集索引:[20 21 22 23 24 25 26 27 28 29]测试集标签: [2 2 2 2 2 2 2 2 2 2]测试集数据: [40 41] [42 43] [44 45] [46 47] [48 49] [50 51] [52 53] [54 55] [56 57] [58 59] 
=============================================================进程已结束,退出代码 0

3.3 结果解释

可以看到测试集标签里面有0,但是训练集标签里没有0——这没办法做测试。
可以看到第1折叠的结果,测试集数据和测试集数据的标签对应和图上的第0行对应。

=================KFold 第1折叠 ====================
train -  [ 0  2 18]训练集索引:[10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29]训练集标签: [1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2]训练集数据: [20 21] [22 23] [24 25] [26 27] [28 29] [30 31] [32 33] [34 35] [36 37] [38 39] [40 41] [42 43] [44 45] [46 47] [48 49] [50 51] [52 53] [54 55] [56 57] [58 59] 
test  -  [3 7]测试集索引:[0 1 2 3 4 5 6 7 8 9]测试集标签: [0 0 0 1 1 1 1 1 1 1]测试集数据: [0 1] [2 3] [4 5] [6 7] [8 9] [10 11] [12 13] [14 15] [16 17] [18 19] 
=============================================================

四、总结

KFold:不考虑标签(class)和组(group)的影响。

  • 有时候测试集包含某一类的全部标签,而训练集不包含该类的样本。也就是说没经过训练,就要测试(KFold 第1折叠)。
  • 适用于数据比较平衡,数据来自同一组(同一个机器,不同故障)的时候。
  • 记住要打乱数据。

这篇关于KFold解释和代码实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559449

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

Java中ArrayList的8种浅拷贝方式示例代码

《Java中ArrayList的8种浅拷贝方式示例代码》:本文主要介绍Java中ArrayList的8种浅拷贝方式的相关资料,讲解了Java中ArrayList的浅拷贝概念,并详细分享了八种实现浅... 目录引言什么是浅拷贝?ArrayList 浅拷贝的重要性方法一:使用构造函数方法二:使用 addAll(

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall