MIT线性代数笔记-第34讲-左右逆,伪逆

2024-01-01 13:28

本文主要是介绍MIT线性代数笔记-第34讲-左右逆,伪逆,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 34.左右逆,伪逆
      • 左右逆
      • 伪逆
    • 打赏

34.左右逆,伪逆

左右逆

之前讲到的逆都是针对可逆方阵而言的,对于长方矩阵,实际上也有广义的逆,那就是左逆和右逆

  1. 左逆

    当矩阵列满秩,即 r = n r = n r=n时,该矩阵有左逆(虽然各列线性无关,但是 r < m r < m r<m,列向量无法组成一组基,所以没有右逆),设该矩阵为 A A A A A A列满秩,所以 A T A A^T A ATA是可逆矩阵,有 ( A T A ) − 1 A T A = I (A^T A)^{-1} A^T A = I (ATA)1ATA=I,所以左逆 A l e f t − 1 = ( A T A ) − 1 A T A^{-1}_{left} = (A^T A)^{-1} A^T Aleft1=(ATA)1AT,且得到的单位矩阵是 n n n阶的

  2. 右逆

    当矩阵 A A A行满秩时, A A T A A^T AAT是可逆矩阵,有 A A T ( A A T ) − 1 = I A A^T (A A^T)^{-1} = I AAT(AAT)1=I,所以有右逆 A r i g h t − 1 = A T ( A A T ) − 1 A^{-1}_{right} = A^T (A A^T)^{-1} Aright1=AT(AAT)1,且得到的单位矩阵是 m m m阶的

  3. 当列满秩时,有 A l e f t − 1 A = I A^{-1}_{left} A = I Aleft1A=I,但是如果把左逆放到右边,就可以得到: A A l e f t − 1 = A ( A T A ) − 1 A T A A^{-1}_{left} = A (A^T A)^{-1} A^T AAleft1=A(ATA)1AT,即 A A A列空间的投影矩阵;同理,当行满秩时, A r i g h t − 1 A A^{-1}_{right} A Aright1A A A A行空间的投影矩阵


伪逆

  1. 伪逆

    可以发现,矩阵在左或右无逆是分别由零空间和左零空间不只有 0 ⃗ \vec{0} 0 引起的,因为如果左乘了零空间的非零向量得到 0 ⃗ \vec{0} 0 ,乘上任何矩阵都无法得到原来的向量,右乘同理

    但是如果不考虑这两个零空间呢,比如只让矩阵乘上它行空间中的向量,很明显这会得到它列空间中的向量,接下来思考这个过程是否可逆

    因为行空间和列空间的维数一致,所以二者中的向量可能存在一定的对应关系,也就是映射,考虑行空间中的两个不同向量 x ⃗ , y ⃗ \vec{x} , \vec{y} x ,y ,让它们分别对应列空间中的 A x ⃗ , A y ⃗ A \vec{x} , A \vec{y} Ax ,Ay

    证明 A x ⃗ ≠ A y ⃗ A \vec{x} \ne A \vec{y} Ax =Ay

    ​    若 A x ⃗ = A y ⃗ A \vec{x} = A \vec{y} Ax =Ay ,即 A ( x ⃗ − y ⃗ ) = 0 ⃗ A (\vec{x} - \vec{y}) = \vec{0} A(x y )=0 ,则 x ⃗ − y ⃗ \vec{x} - \vec{y} x y 属于 A A A的零空间,又 x ⃗ , y ⃗ \vec{x} , \vec{y} x ,y 都属于 A A A的行空间,所以着 x ⃗ − y ⃗ \vec{x} - \vec{y} x y 同时属于零空间和行空间,而行空间与零空间互为正交补,所以 x ⃗ − y ⃗ \vec{x} - \vec{y} x y 只能为 0 ⃗ \vec{0} 0 ,即 x ⃗ = y ⃗ \vec{x} = \vec{y} x =y ,与条件矛盾,假设不成立,因而 A x ⃗ ≠ A y ⃗ A \vec{x} \ne A \vec{y} Ax =Ay

    由此可以说明行空间和列空间中向量的一一对应关系,而由列空间中的向量得到行空间中对应向量所用的矩阵即为原矩阵的伪逆,记作 A + A^+ A+,即 x ⃗ = A + ( A x ⃗ ) \vec{x} = A^+ (A \vec{x}) x =A+(Ax )

    考虑 A + A A^+ A A+A对任意向量的作用,对于任意一个 n n n维向量 x ⃗ \vec{x} x ,它一定由零空间和行空间中的向量线性组合而成,零空间中的向量乘 A A A得到 0 ⃗ \vec{0} 0 ,而行空间中的向量乘 A + A A^+ A A+A得到其本身,所以 A + A A^+ A A+A可视为一个投影矩阵,用于把任意 n n n维向量投影至 A A A的行空间;同理, A A + A A^+ AA+也可视为一个投影矩阵,用于把任意 m m m维向量投影至 A A A的列空间

  2. 求伪逆

    使用 S V D SVD SVD求伪逆,先将一个任意矩阵 A A A分解为 U Σ V T U \Sigma V^T UΣVT

    Σ = [ σ 1 ⋯ 0 0 ⋯ 0 ⋮ ⋱ ⋮ ⋮ ⋯ ⋮ 0 ⋯ σ r 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋯ ⋮ ⋮ ⋱ ⋮ 0 ⋯ 0 0 ⋯ 0 ] \Sigma = \begin{bmatrix} \sigma_1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & \cdots & \sigma_r & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} Σ= σ10000σr0000000000 ,很容易求得 Σ \Sigma Σ的伪逆为 [ 1 σ 1 ⋯ 0 0 ⋯ 0 ⋮ ⋱ ⋮ ⋮ ⋯ ⋮ 0 ⋯ 1 σ r 0 ⋯ 0 0 ⋯ 0 0 ⋯ 0 ⋮ ⋯ ⋮ ⋮ ⋱ ⋮ 0 ⋯ 0 0 ⋯ 0 ] \begin{bmatrix} \dfrac{1}{\sigma_1} & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \cdots & \vdots \\ 0 & \cdots & \dfrac{1}{\sigma_r} & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \cdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 \end{bmatrix} σ110000σr10000000000

    因为 U , V T U , V^T U,VT均为正交矩阵,是可逆的,且伪逆在一定条件下本质上对应一个逆操作,所以 A + = V Σ + U T A^+ = V \Sigma^+ U^T A+=VΣ+UT


打赏

制作不易,若有帮助,欢迎打赏!
赞赏码

支付宝付款码

这篇关于MIT线性代数笔记-第34讲-左右逆,伪逆的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559384

相关文章

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

BUUCTF(34)特殊的 BASE64

使用pycharm时,如果想把代码撤销到之前的状态可以用 Ctrl+z 如果不小心撤销多了,可以用 Ctrl+Shift+Z 还原, 别傻傻的重新敲了 BUUCTF在线评测 (buuoj.cn) 查看字符串,想到base64的变表 这里用的c++的标准程序库中的string,头文件是#include<string> 这是base64的加密函数 std::string

论文阅读笔记: Segment Anything

文章目录 Segment Anything摘要引言任务模型数据引擎数据集负责任的人工智能 Segment Anything Model图像编码器提示编码器mask解码器解决歧义损失和训练 Segment Anything 论文地址: https://arxiv.org/abs/2304.02643 代码地址:https://github.com/facebookresear

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【C++学习笔记 20】C++中的智能指针

智能指针的功能 在上一篇笔记提到了在栈和堆上创建变量的区别,使用new关键字创建变量时,需要搭配delete关键字销毁变量。而智能指针的作用就是调用new分配内存时,不必自己去调用delete,甚至不用调用new。 智能指针实际上就是对原始指针的包装。 unique_ptr 最简单的智能指针,是一种作用域指针,意思是当指针超出该作用域时,会自动调用delete。它名为unique的原因是这个

查看提交历史 —— Git 学习笔记 11

查看提交历史 查看提交历史 不带任何选项的git log-p选项--stat 选项--pretty=oneline选项--pretty=format选项git log常用选项列表参考资料 在提交了若干更新,又或者克隆了某个项目之后,你也许想回顾下提交历史。 完成这个任务最简单而又有效的 工具是 git log 命令。 接下来的例子会用一个用于演示的 simplegit

记录每次更新到仓库 —— Git 学习笔记 10

记录每次更新到仓库 文章目录 文件的状态三个区域检查当前文件状态跟踪新文件取消跟踪(un-tracking)文件重新跟踪(re-tracking)文件暂存已修改文件忽略某些文件查看已暂存和未暂存的修改提交更新跳过暂存区删除文件移动文件参考资料 咱们接着很多天以前的 取得Git仓库 这篇文章继续说。 文件的状态 不管是通过哪种方法,现在我们已经有了一个仓库,并从这个仓

忽略某些文件 —— Git 学习笔记 05

忽略某些文件 忽略某些文件 通过.gitignore文件其他规则源如何选择规则源参考资料 对于某些文件,我们不希望把它们纳入 Git 的管理,也不希望它们总出现在未跟踪文件列表。通常它们都是些自动生成的文件,比如日志文件、编译过程中创建的临时文件等。 通过.gitignore文件 假设我们要忽略 lib.a 文件,那我们可以在 lib.a 所在目录下创建一个名为 .gi