使用 Promethues 实现应用监控的一些实践

2024-01-01 12:40

本文主要是介绍使用 Promethues 实现应用监控的一些实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

公众号关注 「奇妙的 Linux 世界」

设为「星标」,每天带你玩转 Linux !

975aaa30f51178aaaef42be019fbe01c.png

在这篇文章[1]中我们介绍了如何利用 Prometheus 监控应用。在后续的工作中随着监控的深入,我们结合自己的经验和官方文档总结了一些 Metrics 的实践。希望这些实践能给大家提供参考。

确定监控对象

在具体设计 Metrics 之前,首先需要明确需要测量的对象。需要测量的对象应该依据具体的问题背景、需求和需监控的系统本身来确定。

从需求出发

Google 针对大量分布式监控的经验总结出四个监控的黄金指标,这四个指标对于一般性的监控测量对象都具有较好的参考意义。这四个指标分别为:

  • 延迟:服务请求的时间。

  • 通讯量:监控当前系统的流量,用于衡量服务的容量需求。

  • 错误:监控当前系统所有发生的错误请求,衡量当前系统错误发生的速率。

  • 饱和度:衡量当前服务的饱和度。主要强调最能影响服务状态的受限制的资源。例如,如果系统主要受内存影响,那就主要关注系统的内存状态。以上四种指标,其实是为了满足四个监控需求:

  • 反映用户体验,衡量系统核心 å 性能。如:在线系统的时延,作业计算系统的作业完成时间等。

  • 反映系统的吞吐量。如:请求数,发出和接收的网络包大小等。

  • 帮助发现和定位故障和问题。如:错误计数、调用失败率等。

  • 反映系统的饱和度和负载。如:系统占用的内存、作业队列的长度等。除了以上常规需求,还可根据具体的问题场景,为了排除和发现以前出现过或可能出现的问题,确定相应的测量对象。比如,系统需要经常调用的一个库的接口可能耗时较长,或偶有失败,可制定 Metrics 以测量这个接口的时延和失败数。

从需要监控的系统出发

为了满足相应的需求,不同系统需要观测的测量对象也是不同的。在 官方文档 的最佳实践中,将需要监控的应用分为了三类:

  • 线上服务系统(Online-serving systems):需对请求做即时的响应,请求发起者会等待响应。如 web 服务器。

  • 线下计算系统(Offline processing):请求发起者不会等待响应,请求的作业通常会耗时较长。如批处理计算框架 Spark 等。

  • 批处理作业(Batch jobs):这类应用通常为一次性的,不会一直运行,运行完成后便会结束运行。如数据分析的 MapReduce 作业。对于每一类应用其通常情况下测量的对象是不太一样的。其总结如下:

  • 线上服务系统:主要有请求、出错的数量,请求的时延等。

  • 线下计算系统:最后开始处理作业的时间,目前正在处理作业的数量,发出了多少 items, 作业队列的长度等。

  • 批处理作业:最后成功执行的时刻,每个主要 stage 的执行时间,总的耗时,处理的记录数量等。

除了系统本身,有时还需监控子系统:

  • 使用的库(Libraries): 调用次数,成功数,出错数,调用的时延。

  • 日志(Logging):计数每一条写入的日志,从而可找到每条日志发生的频率和时间。

  • Failures: 错误计数。

  • 线程池:排队的请求数,正在使用的线程数,总线程数,耗时,正在处理的任务数等。

  • 缓存:请求数,命中数,总时延等。

选择 Vector

选用 Vec 的原则:

  • 数据类型类似但资源类型、收集地点等不同

  • Vec 内数据单位统一 例子:

  • 不同资源对象的请求延迟

  • 不同地域服务器的请求延迟

  • 不同 http 请求错误的计数 … 此外,官方文档 中建议,对于一个资源对象的不同操作,如 Read/Write、Send/Receive, 应采用不同的 Metric 去记录,而不要放在一个 Metric 里。原因是监控时一般不会对这两者做聚合,而是分别去观测。
    不过对于 request 的测量,通常是以 Label 做区分不同的 action。

确定 Label

常见 Label 的选择有:

  • resource

  • region

  • type …

确定 Label 的一个重要原则是:同一维度 Label 的数据是可平均和可加和的,也即单位要统一。如风扇的风速和电压就不能放在一个 Label 里。

d5ec9bae7ab2456a995d91af1197c543.png

点击上方图片,打开小程序,『饿了么外卖』红包天天免费领!

此外,不建议下列做法:

my_metric{label=a} 1 my_metric{label=b} 6 my_metric{label=total} 7

即在 Label 中同时统计了分和总的数据,建议采用 PromQL 在服务器端聚合得到总和的结果。或者用另外的 Metric 去测量总的数据。

命名 Metrics 和 Label

好的命名能够见名知义,因此命名也是良好设计的一环。

Metric 的命名:

  • 需要符合 pattern: a-zA-Z*:*

  • 应该包含一个单词作为前缀,表明这个 Metric 所属的域。如:

    • prometheus_notifications_total

    • process_cpu_seconds_total

    • ipamd_request_latency

  • 应该包含一个单位的单位作为后缀,表明这个 Metric 的单位。如:

    • http_request_duration_seconds

    • node_memory_usage_bytes

    • http_requests_total (for a unit-less accumulating count)

  • 逻辑上与被测量的变量含义相同。

  • 尽量使用基本单位,如 seconds,bytes。而不是 Milliseconds, megabytes。

Label 的命名:

依据选择的维度命名,如:

  • region: shenzhen/guangzhou/beijing

  • owner: user1/user2/user3

  • stage: extract/transform/load

Buckets 选择

适宜的 buckets 能使 histogram 的百分位数计算更加准确。

理想情况下,桶会使得数据分布呈阶梯状,即各桶区间内数据个数大致相同。buckets 的设计可遵从如下经验:

  • 需要知道数据的大致分布,若事先不知道可先用默认桶 ({.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10})或 2 倍数桶({1,2,4,8…})观察数据分布再调整 buckets。

  • 数据分布较密处桶间隔制定的较窄一些,分布稀疏处可制定的较宽一些。

  • 对于多数时延数据,一般具有长尾的特性,较适宜用指数形式的桶(ExponentialBuckets)。

  • 初始桶上界一般覆盖 10%左右的数据,若不关注头部数据也可以让初始上界更大一些。

  • 若为了更准确计算特定百分位数,如 90%,可在 90%的数据处加密分布桶,即减少桶的间隔。

比如我在监控我们某些任务耗时的时候,就是选根据实际情况估算出大致的 bucket 取值,上线后观察数据和监控再去调整 bucket, 这样经过几次调整应该就能调整到比较合适的 bucket。

Grafana 使用技巧

查看所有维度

如果你想知道是否还能按其它维度分组,并快速查看还有哪些维度,可采用以下技巧:在 query 的表达式上只保留指标名称,不做任何计算,Legend format 也留空。这样就能显示出原始的 metric 数据。如下图所示

37085bb98a9303f1de5e88be739c761e.png

标尺联动

在 Settings 面板中,有一个 Graph Tooltip 设置项,默认使用 Default。

4fc92d48bc84cc1e22968845508cf048.png

下面将图形展示工具分别调整为 Shared crosshair 和 Shared Tooltip 看看效果。可以看到标尺能联动展示了,方便排查问题时确认 2 个指标的关联性。将图形展示工具调整为 Shared Tooltip:

342f87fe45f0a30dbe9b09845a04741c.png

引用链接

[1]

文章: https://www.lxkaka.wang/app-metrics/

原文链接:https://lxkaka.wang/metrics-best-practice/

本文转载自:「云原生实验室」,原文:https://tinyurl.com/zr9wezcr,版权归原作者所有。欢迎投稿,投稿邮箱: editor@hi-linux.com。

bcf4709d82698d3cf86c099ff6312eb2.gif

06205382e68b7aeea0ecb137517554eb.png

你可能还喜欢

点击下方图片即可阅读

1d1d70a1eb8fe018bdec1f497abc053f.png

如何优雅的通过 ApiServer 远程访问 Kubernetes 集群

53e769fd5de65bf554fe1ea485a608e6.png
点击上方图片,『美团|饿了么』外卖红包天天免费领

ad4b8a270d74291ec920e582d5160bfc.png

更多有趣的互联网新鲜事,关注「奇妙的互联网」视频号全了解!

这篇关于使用 Promethues 实现应用监控的一些实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/559274

相关文章

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Redis中Stream详解及应用小结

《Redis中Stream详解及应用小结》RedisStreams是Redis5.0引入的新功能,提供了一种类似于传统消息队列的机制,但具有更高的灵活性和可扩展性,本文给大家介绍Redis中Strea... 目录1. Redis Stream 概述2. Redis Stream 的基本操作2.1. XADD

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

JSONArray在Java中的应用操作实例

《JSONArray在Java中的应用操作实例》JSONArray是org.json库用于处理JSON数组的类,可将Java对象(Map/List)转换为JSON格式,提供增删改查等操作,适用于前后端... 目录1. jsONArray定义与功能1.1 JSONArray概念阐释1.1.1 什么是JSONA