sincerit Protoss and Zerg(快速幂求组合)

2024-01-01 05:48

本文主要是介绍sincerit Protoss and Zerg(快速幂求组合),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

链接:https://ac.nowcoder.com/acm/contest/303/H
来源:牛客网

题目描述
1v1,是星际争霸(StarCraft)中最常见的竞技模式。

tokitsukaze进行了n场1v1。在每一场的1v1中,她都有星灵(Protoss)和异虫(Zerg)两个种族可以选择,分别有a个单位和b个单位。因为tokitsukaze不太擅长玩人类(Terran),所以她肯定不会选择人类。

对于每一场1v1,玩家只能控制己方单位。也就是说,如果选择虫族,那么只能控制虫族单位,如果玩家选择星灵,那么只能控制星灵单位。

在n场1v1中,假设第i场,有ai个虫族单位,和bi个星灵单位。tokitsukaze可以在一场1v1中,任选一种种族进行游戏。如果选择了虫族,那么在这场游戏中,可以选择出兵1到ai个单位。那么同理,如果选择了星灵,那么在这场游戏中,可以选择出兵1到bi个单位。

假设所有异虫单位互不相同,所有星灵单位也互不相同,那么请问tokitsukaze打完这n场1v1,出兵的总方案数是多少,由于答案很大,所以输出答案mod 998244353 后的结果。

注意:若两个方案,有其中一个单位不同,即视为不相同。

输入描述:
第一行包含一个T(T≤10),表示T组数据。

对于每组数据:
第一行包含一个正整数n(1≤n≤100000)。
接下来n行,第i行包含两个整数ai,bi(1≤ai,bi≤10^9),表示第i场1v1,有ai个异虫单位,和bi个星灵单位。
输出描述:
对于每组数据,输出一行,表示mod 998244353后的答案。
示例1
输入
复制
1
2
1 2
2 1
输出
复制
16
说明
第一组样例:

对于第一场对局,tokitsukaze可以选择的虫族兵种有一个,并且将其编号为1,tokitsukaze可以选择的星灵兵种有两个,将其编号为1,2。所以tokitsukaze有四种可供选择的游戏方案:

1、选择虫族,并且派出虫族1号兵种。
2、选择星灵族,并且派出星灵族1号兵种。
3、选择星灵族,并且派出星灵族2号兵种。
4、选择星灵族,并且派出星灵族1,2号兵种。

对于第二场对局,tokitsukaze可以选择的虫族兵种有两个,并且将其编号为1,2,tokitsukaze可以选择的星灵兵种有一个,将其编号为1。所以tokitsukaze有四种可供选择的游戏方案:
1、选择虫族,并且派出虫族1号兵种。
2、选择虫族,并且派出虫族2号兵种。
3、选择虫族,并且派出虫族1,2号兵种。
4、选择星灵族,并且派出星灵族1号兵种。

两场对局是相互独立的事件,所以两轮游戏的出兵方案总数为4*4(mod 998244353)=16种。

假设要派出的兵种有n种
那么可以有多少种组合呢, 可以看成有n个人,每个人都有两种选择(被派出和不被派出)
那么就有2^n这么多种组合情况,除去一个全部不派出的情况就保证了至少有一个人被派出
所以就有2^n-1种情况

#include <stdio.h>
#include <cstring>
typedef long long ll;
const ll MOD = 998244353;
const ll N = 1e5 + 5;
ll spow(ll x, ll n) {x %= MOD;ll ans = 1;while (n) {if (n&1) ans = (ans * x) % MOD;n >>= 1;x = (x * x) % MOD;}return ans%MOD;
}
int main() {int t;scanf("%d", &t);while (t--) {ll n, a, b;scanf("%lld", &n);ll ans = 1, sum = 0;for (int i = 1; i <= n; i++) {scanf("%lld %lld", &a, &b);a = spow(2, a) - 1;b = spow(2, b) - 1;ans = (ans * (a+b)) % MOD;}printf("%lld\n", ans);}return 0;
}

这篇关于sincerit Protoss and Zerg(快速幂求组合)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/558313

相关文章

Rust中的Option枚举快速入门教程

《Rust中的Option枚举快速入门教程》Rust中的Option枚举用于表示可能不存在的值,提供了多种方法来处理这些值,避免了空指针异常,文章介绍了Option的定义、常见方法、使用场景以及注意事... 目录引言Option介绍Option的常见方法Option使用场景场景一:函数返回可能不存在的值场景

电脑桌面文件删除了怎么找回来?别急,快速恢复攻略在此

在日常使用电脑的过程中,我们经常会遇到这样的情况:一不小心,桌面上的某个重要文件被删除了。这时,大多数人可能会感到惊慌失措,不知所措。 其实,不必过于担心,因为有很多方法可以帮助我们找回被删除的桌面文件。下面,就让我们一起来了解一下这些恢复桌面文件的方法吧。 一、使用撤销操作 如果我们刚刚删除了桌面上的文件,并且还没有进行其他操作,那么可以尝试使用撤销操作来恢复文件。在键盘上同时按下“C

hdu4869(逆元+求组合数)

//输入n,m,n表示翻牌的次数,m表示牌的数目,求经过n次操作后共有几种状态#include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>#include<map>#include<stdio.h>#include<stdlib.h>#includ

hdu 4565 推倒公式+矩阵快速幂

题意 求下式的值: Sn=⌈ (a+b√)n⌉%m S_n = \lceil\ (a + \sqrt{b}) ^ n \rceil\% m 其中: 0<a,m<215 0< a, m < 2^{15} 0<b,n<231 0 < b, n < 2^{31} (a−1)2<b<a2 (a-1)^2< b < a^2 解析 令: An=(a+b√)n A_n = (a +

v0.dev快速开发

探索v0.dev:次世代开发者之利器 今之技艺日新月异,开发者之工具亦随之进步不辍。v0.dev者,新兴之开发者利器也,迅速引起众多开发者之瞩目。本文将引汝探究v0.dev之基本功能与优势,助汝速速上手,提升开发之效率。 何谓v0.dev? v0.dev者,现代化之开发者工具也,旨在简化并加速软件开发之过程。其集多种功能于一体,助开发者高效编写、测试及部署代码。无论汝为前端开发者、后端开发者

利用Django框架快速构建Web应用:从零到上线

随着互联网的发展,Web应用的需求日益增长,而Django作为一个高级的Python Web框架,以其强大的功能和灵活的架构,成为了众多开发者的选择。本文将指导你如何从零开始使用Django框架构建一个简单的Web应用,并将其部署到线上,让世界看到你的作品。 Django简介 Django是由Adrian Holovaty和Simon Willison于2005年开发的一个开源框架,旨在简

CentOs7上Mysql快速迁移脚本

因公司业务需要,对原来在/usr/local/mysql/data目录下的数据迁移到/data/local/mysql/mysqlData。 原因是系统盘太小,只有20G,几下就快满了。 参考过几篇文章,基于大神们的思路,我封装成了.sh脚本。 步骤如下: 1) 先修改好/etc/my.cnf,        ##[mysqld]       ##datadir=/data/loc

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

UE5 半透明阴影 快速解决方案

Step 1: 打开该选项 Step 2: 将半透明材质给到模型后,设置光照的Shadow Resolution Scale,越大,阴影的效果越好

快速排序(java代码实现)

简介: 1.采用“分治”的思想,对于一组数据,选择一个基准元素,这里选择中间元素mid 2.通过第一轮扫描,比mid小的元素都在mid左边,比mid大的元素都在mid右边 3.然后使用递归排序这两部分,直到序列中所有数据均有序为止。 public class csdnTest {public static void main(String[] args){int[] arr = {3,