推荐七款常用的Python数据可视化模块,数据可视化的福利

2024-01-01 00:20

本文主要是介绍推荐七款常用的Python数据可视化模块,数据可视化的福利,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

image

数据可视化的库有挺多的,这里推荐几个比较常用的:

Matplotlib

Plotly

Seaborn

Ggplot

Bokeh

Pyechart

Pygal

关注后私信小编 PDF领取十套电子文档书籍

Plotly

plotly 文档地址(https://plot.ly/python/#financial-charts)

image

使用方式:

plotly 有 online 和 offline 两种方式,这里只介绍 offline 的。

image

这是 plotly 官方教程的一部分

import plotly.plotly as py

import numpy as np

data = [dict(

visible=False,

line=dict(color=’#00CED1’, width=6), # 配置线宽和颜色

name=’ = ’ + str(step),

x=np.arange(0, 10, 0.01), # x 轴参数

y=np.sin(step * np.arange(0, 10, 0.01))) for step in np.arange(0, 5, 0.1)] # y 轴参数

data[10][‘visible’] = True

py.iplot(data, filename=‘Single Sine Wave’)

只要将最后一行中的

py.iplot

替换为下面代码

py.offline.plot

便可以运行。

漏斗图

这个图代码太长了,就不 po 出来了。

image

Basic Box Plot

好吧,不知道怎么翻译,直接用原名。

image

import plotly.plotly

import plotly.graph_objs as go

import numpy as np

y0 = np.random.randn(50)-1

y1 = np.random.randn(50)+1

trace0 = go.Box(

y=y0

)

trace1 = go.Box(

y=y1

)

data = [trace0, trace1]

plotly.offline.plot(data)

Wind Rose Chart

好吧,不知道怎么翻译,直接用原名。

image

import plotly.graph_objs as go

trace1 = go.Barpolar(

r=[77.5, 72.5, 70.0, 45.0, 22.5, 42.5, 40.0, 62.5],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=‘11-14 m/s’,

marker=dict(

color=‘rgb(106,81,163)’

)

)

trace2 = go.Barpolar(

r=[57.49999999999999, 50.0, 45.0, 35.0, 20.0, 22.5, 37.5, 55.00000000000001],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’], # 鼠标浮动标签文字描述

name=‘8-11 m/s’,

marker=dict(

color=‘rgb(158,154,200)’

)

)

trace3 = go.Barpolar(

r=[40.0, 30.0, 30.0, 35.0, 7.5, 7.5, 32.5, 40.0],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=‘5-8 m/s’,

marker=dict(

color=‘rgb(203,201,226)’

)

)

trace4 = go.Barpolar(

r=[20.0, 7.5, 15.0, 22.5, 2.5, 2.5, 12.5, 22.5],

text=[‘North’, ‘N-E’, ‘East’, ‘S-E’, ‘South’, ‘S-W’, ‘West’, ‘N-W’],

name=’

marker=dict(

color=‘rgb(242,240,247)’

)

)

data = [trace1, trace2, trace3, trace4]

layout = go.Layout(

title=‘Wind Speed Distribution in Laurel, NE’,

font=dict(

size=16

),

legend=dict(

font=dict(

size=16

)

),

radialaxis=dict(

ticksuffix=’%’

),

orientation=270

)

fig = go.Figure(data=data, layout=layout)

plotly.offline.plot(fig, filename=‘polar-area-chart’)

Basic Ternary Plot with Markers

篇幅有点长,这里就不 po 代码了。

image

Bokeh

这里展示一下常用的图表和比较抢眼的图表,详细的文档可查看(https://bokeh.pydata.org/en/latest/docs/user_guide/categorical.html)

条形图

这配色看着还挺舒服的,比 pyecharts 条形图的配色好看一点。

这篇关于推荐七款常用的Python数据可视化模块,数据可视化的福利的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557633

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专