左神算法:环形单链表的约瑟夫问题(Java版)

2023-12-31 20:18

本文主要是介绍左神算法:环形单链表的约瑟夫问题(Java版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本题来自左神《程序员面试代码指南》“环形单链表的约瑟夫问题”题目。

题目

据说,著名犹太历史学家 Josephus 有过以下故事:

在罗马人占领乔塔帕特后,39 个犹太人与Josephus 及他的朋友躲到一个洞中,39 个犹太人决定宁愿死也不要被敌人抓到,于是决定了一种自杀方式,41 个人排成一个圆圈,由第 1 个人开始报数,报数到 3 的人就自杀,然后再由下一个人重新报 1,报数到 3 的人再自杀,这样依次下去,直到剩下最后一个人时,那个人可以自由选择自己的命运。这就是著名的约瑟夫问题。现在请用单向环形链表描述该结构并呈现整个自杀过程。

输入:一个环形单向链表的头节点 head 和报数的值 m。

返回:最后生存下来的节点,且这个节点自己组成环形单向链表,其他节点都删掉。

进阶问题:如果链表节点数为 N,想在时间复杂度为 O(N)时完成原问题的要求,该怎么实现?

题解

普通解法

普通的解法就像题目描述的过程一样,具体实现请参看如下代码中的 josephusKill1 方法。

1.如果链表为空或者链表节点数为 1,或者 m 的值小于 1,则不用调整就直接返回。
2.在环形链表中遍历每个节点,不断转圈,不断让每个节点报数。
3.当报数到达 m 时,就删除当前报数的节点。
4.删除节点后,别忘了还要把剩下的节点继续连成环状,继续转圈报数,继续删除。
5.不停地删除,直到环形链表中只剩一个节点,过程结束。

/*** 循环报数,报到 m 的人自杀*/
public static Node josephusKill1(Node head, int m) {if (head == null || head.next == head || m < 1) {return head;}Node last = head;while (last.next != head) {last = last.next;}int count = 0;while (head != last) { // 直到仅剩一个为止if (++count == m) { // 正好数到 mlast.next = head.next; // 删除 head 所指向的节点count = 0; // 归零,下一个重新计数} else { // 继续往后数last = last.next;}head = last.next; // head 在前面走,last 在后面跟着}return head;
}

普通的解法在实现上不难,就是考查面试者基本的代码实现技巧,做到不出错即可。

很明显的是,每删除一个节点,都需要遍历 m 次,一共需要删除的节点数为 n-1,所以普通解法的时间复杂度为 O(n×m),这明显是不符合进阶要求的。

下面介绍进阶的解法。

进阶解法

原问题之所以花费的时间多,是因为我们一开始不知道到底哪一个节点最后会活下来。所以依靠不断地删除来淘汰节点,当只剩下一个节点的时候,才知道是这个节点。如果不通过一直删除方式,有没有办法直接确定最后活下来的节点是哪一个呢?这就是进阶解法的实质。

举个例子,环形链表为:1->2->3->4->5->1,这个链表节点数为 n=5,m=3。通过不断删除的方式,最后节点 4 会活下来。但我们可以不用一直删除的方式,而是用进阶的方法,根据 n 与 m 的值,直接算出是第 4 个节点最终会活下来,接下来找到节点 4 即可。

到底怎么直接算出来呢?首先,如果环形链表节点数为 n,我们做如下定义:从这个环形链表的头节点开始编号,头节点编号为 1,头节点的下一个节点编号为 2,……,最后一个节点编号为 n。然后考虑如下问题:

最后只剩下一个节点,这个幸存节点在只由自己组成的环中编号为 1,记为 Num(1) = 1;
在由两个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(2);
……
在由 i-1 个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(i-1);
在由 i 个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(i);
……

在由 n 个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(n)。
我们已经知道 Num(1) = 1,如果再确定 Num(i-1)和 Num(i)到底是什么关系,就可以逐渐求出 Num(n)了。下面是求解的过程。
首先来认识一个非常简单的函数 f(x)=x%i 的图像,如图 2-1 所示。

在这里插入图片描述

报数和编号之间的关系

假设现在圈中一共有 i 个节点,从头节点开始报数,报 1 的是编号 1 的节点,报 2 的是编号 2 的节点,那么报数和编号的关系如下。

在这里插入图片描述

举个例子,环形链表有 3 个节点,报 1 的是编号 1,报 2 的是编号 2,报 3 的是编号 3,报
4 的是编号 1,报 5 的是编号 2,报 6 的是编号 3,报 7 的是编号 1……
报数和编号的关系图如图 2-2 所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1.遍历链表,求链表的节点个数记为 n,时间复杂度为 O(N)。
2.根据 n 和 m 的值,还有上文分析的 Num(i-1)(新编号)和 Num(i)(老编号)的关系,依次求生存节点的编号。这一步的具体过程请参看如下代码中的 getLive 方法,getLive 方法为单决策的递归函数,且递归为 N 层,所以时间复杂度为 O(N)。
3.最后根据生存节点的编号,遍历链表找到该节点,时间复杂度为 O(N)。
4.整个过程结束,总的时间复杂度为 O(N)。

进阶解法的全部过程请参看如下代码中的 josephusKill2 方法。

代码

package chapter_2_listproblem;public class Problem_06_JosephusProblem {public static class Node {public int value;public Node next;public Node(int data) {this.value = data;}}/*** 循环报数,报到 m 的人自杀*/public static Node josephusKill1(Node head, int m) {if (head == null || head.next == head || m < 1) {return head;}Node last = head;while (last.next != head) {last = last.next;}int count = 0;while (head != last) { // 直到仅剩一个为止if (++count == m) { // 正好数到 mlast.next = head.next; // 删除 head 所指向的节点count = 0; // 归零,下一个重新计数} else { // 继续往后数last = last.next;}head = last.next; // head 在前面走,last 在后面跟着}return head;}/*** 循环报数,报到 m 的人自杀*/public static Node josephusKill2(Node head, int m) {if (head == null || head.next == head || m < 1) {return head;}Node cur = head.next;int tmp = 1; // tmp -> list sizewhile (cur != head) {tmp++;cur = cur.next;}tmp = getLive(tmp, m); // tmp -> service node positionwhile (--tmp != 0) {head = head.next;}head.next = head;return head;}/*** 计算最终剩余的节点编号* 注:根据数学推理,杀死节点之前的老编号=(杀死节点之后的新编号+m-1)%i+1* @param i 圈中剩余节点数量* @param m 报数为 m 的自杀* @return 最终生存的节点*/public static int getLive(int i, int m) {if (i == 1) {return 1;}return (getLive(i - 1, m) + m - 1) % i + 1;}public static void printCircularList(Node head) {if (head == null) {return;}System.out.print("Circular List: " + head.value + " ");Node cur = head.next;while (cur != head) {System.out.print(cur.value + " ");cur = cur.next;}System.out.println("-> " + head.value);}public static void main(String[] args) {Node head1 = new Node(1);head1.next = new Node(2);head1.next.next = new Node(3);head1.next.next.next = new Node(4);head1.next.next.next.next = new Node(5);head1.next.next.next.next.next = head1;printCircularList(head1);head1 = josephusKill1(head1, 3);printCircularList(head1);Node head2 = new Node(1);head2.next = new Node(2);head2.next.next = new Node(3);head2.next.next.next = new Node(4);head2.next.next.next.next = new Node(5);head2.next.next.next.next.next = head2;printCircularList(head2);head2 = josephusKill2(head2, 3);printCircularList(head2);}
}

这篇关于左神算法:环形单链表的约瑟夫问题(Java版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557047

相关文章

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Java中String字符串使用避坑指南

《Java中String字符串使用避坑指南》Java中的String字符串是我们日常编程中用得最多的类之一,看似简单的String使用,却隐藏着不少“坑”,如果不注意,可能会导致性能问题、意外的错误容... 目录8个避坑点如下:1. 字符串的不可变性:每次修改都创建新对象2. 使用 == 比较字符串,陷阱满

Java判断多个时间段是否重合的方法小结

《Java判断多个时间段是否重合的方法小结》这篇文章主要为大家详细介绍了Java中判断多个时间段是否重合的方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录判断多个时间段是否有间隔判断时间段集合是否与某时间段重合判断多个时间段是否有间隔实体类内容public class D

IDEA编译报错“java: 常量字符串过长”的原因及解决方法

《IDEA编译报错“java:常量字符串过长”的原因及解决方法》今天在开发过程中,由于尝试将一个文件的Base64字符串设置为常量,结果导致IDEA编译的时候出现了如下报错java:常量字符串过长,... 目录一、问题描述二、问题原因2.1 理论角度2.2 源码角度三、解决方案解决方案①:StringBui

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

Java中ArrayList和LinkedList有什么区别举例详解

《Java中ArrayList和LinkedList有什么区别举例详解》:本文主要介绍Java中ArrayList和LinkedList区别的相关资料,包括数据结构特性、核心操作性能、内存与GC影... 目录一、底层数据结构二、核心操作性能对比三、内存与 GC 影响四、扩容机制五、线程安全与并发方案六、工程

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2