左神算法:环形单链表的约瑟夫问题(Java版)

2023-12-31 20:18

本文主要是介绍左神算法:环形单链表的约瑟夫问题(Java版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本题来自左神《程序员面试代码指南》“环形单链表的约瑟夫问题”题目。

题目

据说,著名犹太历史学家 Josephus 有过以下故事:

在罗马人占领乔塔帕特后,39 个犹太人与Josephus 及他的朋友躲到一个洞中,39 个犹太人决定宁愿死也不要被敌人抓到,于是决定了一种自杀方式,41 个人排成一个圆圈,由第 1 个人开始报数,报数到 3 的人就自杀,然后再由下一个人重新报 1,报数到 3 的人再自杀,这样依次下去,直到剩下最后一个人时,那个人可以自由选择自己的命运。这就是著名的约瑟夫问题。现在请用单向环形链表描述该结构并呈现整个自杀过程。

输入:一个环形单向链表的头节点 head 和报数的值 m。

返回:最后生存下来的节点,且这个节点自己组成环形单向链表,其他节点都删掉。

进阶问题:如果链表节点数为 N,想在时间复杂度为 O(N)时完成原问题的要求,该怎么实现?

题解

普通解法

普通的解法就像题目描述的过程一样,具体实现请参看如下代码中的 josephusKill1 方法。

1.如果链表为空或者链表节点数为 1,或者 m 的值小于 1,则不用调整就直接返回。
2.在环形链表中遍历每个节点,不断转圈,不断让每个节点报数。
3.当报数到达 m 时,就删除当前报数的节点。
4.删除节点后,别忘了还要把剩下的节点继续连成环状,继续转圈报数,继续删除。
5.不停地删除,直到环形链表中只剩一个节点,过程结束。

/*** 循环报数,报到 m 的人自杀*/
public static Node josephusKill1(Node head, int m) {if (head == null || head.next == head || m < 1) {return head;}Node last = head;while (last.next != head) {last = last.next;}int count = 0;while (head != last) { // 直到仅剩一个为止if (++count == m) { // 正好数到 mlast.next = head.next; // 删除 head 所指向的节点count = 0; // 归零,下一个重新计数} else { // 继续往后数last = last.next;}head = last.next; // head 在前面走,last 在后面跟着}return head;
}

普通的解法在实现上不难,就是考查面试者基本的代码实现技巧,做到不出错即可。

很明显的是,每删除一个节点,都需要遍历 m 次,一共需要删除的节点数为 n-1,所以普通解法的时间复杂度为 O(n×m),这明显是不符合进阶要求的。

下面介绍进阶的解法。

进阶解法

原问题之所以花费的时间多,是因为我们一开始不知道到底哪一个节点最后会活下来。所以依靠不断地删除来淘汰节点,当只剩下一个节点的时候,才知道是这个节点。如果不通过一直删除方式,有没有办法直接确定最后活下来的节点是哪一个呢?这就是进阶解法的实质。

举个例子,环形链表为:1->2->3->4->5->1,这个链表节点数为 n=5,m=3。通过不断删除的方式,最后节点 4 会活下来。但我们可以不用一直删除的方式,而是用进阶的方法,根据 n 与 m 的值,直接算出是第 4 个节点最终会活下来,接下来找到节点 4 即可。

到底怎么直接算出来呢?首先,如果环形链表节点数为 n,我们做如下定义:从这个环形链表的头节点开始编号,头节点编号为 1,头节点的下一个节点编号为 2,……,最后一个节点编号为 n。然后考虑如下问题:

最后只剩下一个节点,这个幸存节点在只由自己组成的环中编号为 1,记为 Num(1) = 1;
在由两个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(2);
……
在由 i-1 个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(i-1);
在由 i 个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(i);
……

在由 n 个节点组成的环中,这个幸存节点的编号是多少呢?假设编号是 Num(n)。
我们已经知道 Num(1) = 1,如果再确定 Num(i-1)和 Num(i)到底是什么关系,就可以逐渐求出 Num(n)了。下面是求解的过程。
首先来认识一个非常简单的函数 f(x)=x%i 的图像,如图 2-1 所示。

在这里插入图片描述

报数和编号之间的关系

假设现在圈中一共有 i 个节点,从头节点开始报数,报 1 的是编号 1 的节点,报 2 的是编号 2 的节点,那么报数和编号的关系如下。

在这里插入图片描述

举个例子,环形链表有 3 个节点,报 1 的是编号 1,报 2 的是编号 2,报 3 的是编号 3,报
4 的是编号 1,报 5 的是编号 2,报 6 的是编号 3,报 7 的是编号 1……
报数和编号的关系图如图 2-2 所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1.遍历链表,求链表的节点个数记为 n,时间复杂度为 O(N)。
2.根据 n 和 m 的值,还有上文分析的 Num(i-1)(新编号)和 Num(i)(老编号)的关系,依次求生存节点的编号。这一步的具体过程请参看如下代码中的 getLive 方法,getLive 方法为单决策的递归函数,且递归为 N 层,所以时间复杂度为 O(N)。
3.最后根据生存节点的编号,遍历链表找到该节点,时间复杂度为 O(N)。
4.整个过程结束,总的时间复杂度为 O(N)。

进阶解法的全部过程请参看如下代码中的 josephusKill2 方法。

代码

package chapter_2_listproblem;public class Problem_06_JosephusProblem {public static class Node {public int value;public Node next;public Node(int data) {this.value = data;}}/*** 循环报数,报到 m 的人自杀*/public static Node josephusKill1(Node head, int m) {if (head == null || head.next == head || m < 1) {return head;}Node last = head;while (last.next != head) {last = last.next;}int count = 0;while (head != last) { // 直到仅剩一个为止if (++count == m) { // 正好数到 mlast.next = head.next; // 删除 head 所指向的节点count = 0; // 归零,下一个重新计数} else { // 继续往后数last = last.next;}head = last.next; // head 在前面走,last 在后面跟着}return head;}/*** 循环报数,报到 m 的人自杀*/public static Node josephusKill2(Node head, int m) {if (head == null || head.next == head || m < 1) {return head;}Node cur = head.next;int tmp = 1; // tmp -> list sizewhile (cur != head) {tmp++;cur = cur.next;}tmp = getLive(tmp, m); // tmp -> service node positionwhile (--tmp != 0) {head = head.next;}head.next = head;return head;}/*** 计算最终剩余的节点编号* 注:根据数学推理,杀死节点之前的老编号=(杀死节点之后的新编号+m-1)%i+1* @param i 圈中剩余节点数量* @param m 报数为 m 的自杀* @return 最终生存的节点*/public static int getLive(int i, int m) {if (i == 1) {return 1;}return (getLive(i - 1, m) + m - 1) % i + 1;}public static void printCircularList(Node head) {if (head == null) {return;}System.out.print("Circular List: " + head.value + " ");Node cur = head.next;while (cur != head) {System.out.print(cur.value + " ");cur = cur.next;}System.out.println("-> " + head.value);}public static void main(String[] args) {Node head1 = new Node(1);head1.next = new Node(2);head1.next.next = new Node(3);head1.next.next.next = new Node(4);head1.next.next.next.next = new Node(5);head1.next.next.next.next.next = head1;printCircularList(head1);head1 = josephusKill1(head1, 3);printCircularList(head1);Node head2 = new Node(1);head2.next = new Node(2);head2.next.next = new Node(3);head2.next.next.next = new Node(4);head2.next.next.next.next = new Node(5);head2.next.next.next.next.next = head2;printCircularList(head2);head2 = josephusKill2(head2, 3);printCircularList(head2);}
}

这篇关于左神算法:环形单链表的约瑟夫问题(Java版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/557047

相关文章

JVM 的类初始化机制

前言 当你在 Java 程序中new对象时,有没有考虑过 JVM 是如何把静态的字节码(byte code)转化为运行时对象的呢,这个问题看似简单,但清楚的同学相信也不会太多,这篇文章首先介绍 JVM 类初始化的机制,然后给出几个易出错的实例来分析,帮助大家更好理解这个知识点。 JVM 将字节码转化为运行时对象分为三个阶段,分别是:loading 、Linking、initialization

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

Spring Security--Architecture Overview

1 核心组件 这一节主要介绍一些在Spring Security中常见且核心的Java类,它们之间的依赖,构建起了整个框架。想要理解整个架构,最起码得对这些类眼熟。 1.1 SecurityContextHolder SecurityContextHolder用于存储安全上下文(security context)的信息。当前操作的用户是谁,该用户是否已经被认证,他拥有哪些角色权限…这些都被保

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

Java架构师知识体认识

源码分析 常用设计模式 Proxy代理模式Factory工厂模式Singleton单例模式Delegate委派模式Strategy策略模式Prototype原型模式Template模板模式 Spring5 beans 接口实例化代理Bean操作 Context Ioc容器设计原理及高级特性Aop设计原理Factorybean与Beanfactory Transaction 声明式事物

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下