【Matlab】根据伯德图计算pid参数方法原理

2023-12-31 15:10

本文主要是介绍【Matlab】根据伯德图计算pid参数方法原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在学习鲁棒控制的过程中,有一些步骤需要根据一些性能参数来计算pid参数,因此记录一下根据伯德图的性能来计算pid参数的原理。

系统开环响应的几个关键参数

在使用开环响应初调控制器参数时,主要就是调整几个需要注意的关键参数,相同的,计算控制器参数也是根据关键参数来进行计算的,主要关心的是一下几个参数:

1)相位裕度

2)穿越频率

3)截止频率

相位裕度:相位裕度是系统的开环增益为 0 db 时(穿越频率),对应相频响应曲线与 -180 度的相位差,用于评估系统的稳定性,相位裕度越大,系统稳定性越好

穿越频率:是指系统幅频响应曲线与 0db 的交点频率,用于评估系统的稳定性

截止频率:是指系统幅频响应曲线与 -3db 相交的频率

其中,穿越频率通常用来衡量系统的相位裕度,截止频率通常用来衡量系统的带宽。当系统满足相位裕度要求时,截止频率越高,系统带宽越大,响应速度越快。

根据伯德图来调整pid参数的中心思路:指定想要的穿越频率,以及在此穿越频率下想要系统达到的相位裕度,之后根据实际系统的频率特性曲线,加入控制器补偿其相位裕度与穿越频率。

单校正环节效果与原理分析

进行整体指标的调整需要用到多个环节,接下来的内容是对单个环节的效果与作用进行分解分析,方便后续合并为整体的计算理解。

超前校正与穿越频率,相位裕度

穿越频率中对应的相频响应曲线,决定相位裕度,超前校正可以用于提升系统的相位裕度。

超前校正的思路是:将相位曲线在某一个频率段向上提升,同时尽量不改变幅值曲线,这样就可以增加系统的相位裕度。

例如以下的一个系统的伯德图,随便给了一个控制器,相位裕度是35.9度,想要抬升其相位裕度:

单个超前或滞后控制器的传递函数表达式为:

w_z < w_p 时,就是超前控制器

w_z > w_p 时,就是滞后控制器

但上述表示方式不容易计算各类参数,需要进行转换。转换有两种方法。

方法一(可能会计算出实际中不合理的值,需要查看计算结果)

超前校正调节器转换为以下的形式:

当 α > 1 时,就是超前校正,小于 1 时,就是滞后校正。

写成这种形式,各种参数比较好算:

1)其上下截止频率为 w1 = 1 / (α*Ta) ,w2 = 1 / Ta

2)最大相位处的频率为:

3)最大相位为

使用一个例子来验证一下,假设穿越频率是 1Hz,需要补偿 30度,让超前校正器的最大相位对应频率对应 1Hz,最大相位为 30度,按照上式计算参数:

%超前校正传递函数
f_lead = 1;  %假设穿越频率为1Hz
compensation_phase = 30;  %假定补偿相位为30度   (α-1)/(α+1) = sin(Φ)   α = (1+sin(Φ)) / (1-sin(Φ))
alpha = (1+sin(compensation_phase / 57.3)) / (1-sin(compensation_phase / 57.3));  %系数,必须大于1,否则会变成滞后校正
Ta = 1 / (f_lead*sqrt(alpha));
a_lead = [alpha*Ta 1];
b_lead = [Ta 1];
lead_K = tf(a_lead, b_lead);  %超前校正传递函数
margin(lead_K);

打印超前校正器的伯德图,与给定一致:

这种方法也是可以的,只是有可能会计算出比较大的 Ta,其实超前校正的分母就对应 PID 控制器中 D 项的滤波器,这种方法会调整滤波器,可能会计算出一个很大的值,在实际中不太合理,需要计算出不合理值后,再重新调整计算。

方法二(与滤波器的值对应,固定其中一个参数)

实际中,对于原始数据的滤波是固定的,因此,可以考虑采用如下的形式:

假设实际中使用的是一个 60Hz 的低通滤波,将T2使用 60Hz 固定住,即 T2 = 1 / fc = 0.0167。

这种方法需要放在整体完整的系统中去求解参数,因此先放在这里。

需要注意,理论上超前校正器最多只能补偿 90 度的相位,实际中,会比理论值更小,如果要增加比较大的相位裕度,可以考虑两个超前校正器串联。

类PI控制器调整截止频率

超前校正器用来补偿系统的相位裕度,截止频率可以由 PI 控制器来进行调节:

但上述的 PI 控制器,在实际的计算过程中,发现了许多的弊端,主要有两处:

1)引入了两个变量,k1,k2,导致没有唯一解,

2)两个变量很容易算出负数来,还需要再检查结果,徒增麻烦

因此,需要将上述控制器砍掉一个参数 k2,只留 k1,最终的计算结果就一直是正数,且计算容易:

这是一个类似 PI 的控制器

接下来,使用此控制器来调节系统,进而求解其开环截止频率的步骤可以简述为以下几步(假设控制对象是二阶系统):

1)将此控制器的传递函数与被控对象传递函数相乘,得到系统的总开环传递函数 KG(s)

2)将 KG(s) 中的 s 用 jw 替代,得到系统的频率响应公式

3)求解 KG(jw) 的幅值为 -3db 时对应的频率 w,即为系统的开环截止频率

系统传递函数为:

加入 PI 控制器的开环传递函数为:

将 s 用 jw 替换,之后写出其幅频响应表达式,之后求解:

此时的幅值对应的 wc 就是截止频率。

求解上述式子需要回顾一些复数计算的公式:

复数的模(幅值)就是其实部,相角是其虚部

再例如,对于以下系统响应:

其幅频响应为:

之后,将 KG 的幅频响应算出:

令其等于 1/sqrt(2) ,也就是列出了截止频率时的方程。

因为是期望截止频率达到想要的值(wc_ref),也就是说,指定 wc = wc_ref,作为一个已知量,写出 k1 的表达式,求得对应的 k1,就可以使此控制器控制截止频率达到想要的值了:

例如,令 w = 15 hz,求解出来的控制器与系统的开环伯德图与截止频率为:

证明计算是无误的,有一点点的误差关系不大,matlab画图与计算的精度有一些区别,不完全一样关系不大。

增加增益系数调节穿越频率

在控制器的前面,再增加一个系数 k,用于调整幅频响应的增益,就可以调整穿越频率到指定的值上,系数 k 的计算原理也比较简单,求出不加 k 时,整个控制器加系统在期望穿越频率下的幅值,记作 g,然后求倒数赋给 k 即可。

完整控制器与系统联立求解参数

以上是单个环节分析验证,最终是要使用完整的控制器与系统进行计算,系数k,加上控制器,再加上超前校正环节,构成最终的控制器,再加上系统的传递函数:

求解参数时,可以根据自己看重系统的哪些性能来联立方程,例如,给定系统的滤波系数T2,期望的系统截止频率 wn_ref,期望的系统穿越频率 wc_ref,期望的系统相位裕度 PM 。

求解时,先刨除参数 k ,因为系数 k 是用于最后的穿越频率增益补偿的,不过k增加了之后,还是会对整体的截止频率预设计有影响。

可以根据截止频率来确定系统的 k1,滤波系数确定系统的 T2,之后的参数 T1 根据以下的期望相位裕度与穿越频率的方程来计算:

 

注意:arctan 计算出来是弧度,PM 也要转化为弧度制

在计算完成之后,再根据出去 k 的系统的幅频响应,确定系数 k。

例如,先设置截止频率为 3hz,60Hz 的滤波频率,1.5hz的穿越频率,60度的相位裕度,得出的结果的伯德图为:

 

控制器转化为PID参数

完整控制器的传递函数为:

PID控制器的传递函数为:

联立两个方程,可以求解出 PID 的参数的表达式:

Kp = k*k1+k*T1 - k*T2

Ki = k

Kd = k*k1*T1 - Kp*T2

Td = T2

求解出的 PID 控制器的伯德图与上面是一致的:

 

这篇关于【Matlab】根据伯德图计算pid参数方法原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/556408

相关文章

SpringBoot日志配置SLF4J和Logback的方法实现

《SpringBoot日志配置SLF4J和Logback的方法实现》日志记录是不可或缺的一部分,本文主要介绍了SpringBoot日志配置SLF4J和Logback的方法实现,文中通过示例代码介绍的非... 目录一、前言二、案例一:初识日志三、案例二:使用Lombok输出日志四、案例三:配置Logback一

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

Java的IO模型、Netty原理解析

《Java的IO模型、Netty原理解析》Java的I/O是以流的方式进行数据输入输出的,Java的类库涉及很多领域的IO内容:标准的输入输出,文件的操作、网络上的数据传输流、字符串流、对象流等,这篇... 目录1.什么是IO2.同步与异步、阻塞与非阻塞3.三种IO模型BIO(blocking I/O)NI

mysql出现ERROR 2003 (HY000): Can‘t connect to MySQL server on ‘localhost‘ (10061)的解决方法

《mysql出现ERROR2003(HY000):Can‘tconnecttoMySQLserveron‘localhost‘(10061)的解决方法》本文主要介绍了mysql出现... 目录前言:第一步:第二步:第三步:总结:前言:当你想通过命令窗口想打开mysql时候发现提http://www.cpp

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE

CentOS 7部署主域名服务器 DNS的方法

《CentOS7部署主域名服务器DNS的方法》文章详细介绍了在CentOS7上部署主域名服务器DNS的步骤,包括安装BIND服务、配置DNS服务、添加域名区域、创建区域文件、配置反向解析、检查配置... 目录1. 安装 BIND 服务和工具2.  配置 BIND 服务3 . 添加你的域名区域配置4.创建区域

mss32.dll文件丢失怎么办? 电脑提示mss32.dll丢失的多种修复方法

《mss32.dll文件丢失怎么办?电脑提示mss32.dll丢失的多种修复方法》最近,很多电脑用户可能遇到了mss32.dll文件丢失的问题,导致一些应用程序无法正常启动,那么,如何修复这个问题呢... 在电脑常年累月的使用过程中,偶尔会遇到一些问题令人头疼。像是某个程序尝试运行时,系统突然弹出一个错误提

电脑提示找不到openal32.dll文件怎么办? openal32.dll丢失完美修复方法

《电脑提示找不到openal32.dll文件怎么办?openal32.dll丢失完美修复方法》openal32.dll是一种重要的系统文件,当它丢失时,会给我们的电脑带来很大的困扰,很多人都曾经遇到... 在使用电脑过程中,我们常常会遇到一些.dll文件丢失的问题,而openal32.dll的丢失是其中比较