二刷--从上到下打印二叉树 III(层序递归+反转)

2023-12-30 18:18

本文主要是介绍二刷--从上到下打印二叉树 III(层序递归+反转),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目描述

image.png

解题思路

实现方式一:递归法进行层序遍历然后根据层次的奇偶进行反转

var levelOrder = function (root) {// 核心思路:二叉树的层序遍历--递归实现if (!root) return [];let result = [];function levelOrder(root,level) {if (!root) return null;result[level] = result

这篇关于二刷--从上到下打印二叉树 III(层序递归+反转)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/553630

相关文章

C语言函数递归实际应用举例详解

《C语言函数递归实际应用举例详解》程序调用自身的编程技巧称为递归,递归做为一种算法在程序设计语言中广泛应用,:本文主要介绍C语言函数递归实际应用举例的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录前言一、递归的概念与思想二、递归的限制条件 三、递归的实际应用举例(一)求 n 的阶乘(二)顺序打印

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR

Java反转字符串的五种方法总结

《Java反转字符串的五种方法总结》:本文主要介绍五种在Java中反转字符串的方法,包括使用StringBuilder的reverse()方法、字符数组、自定义StringBuilder方法、直接... 目录前言方法一:使用StringBuilder的reverse()方法方法二:使用字符数组方法三:使用自

Springboot控制反转与Bean对象的方法

《Springboot控制反转与Bean对象的方法》文章介绍了SpringBoot中的控制反转(IoC)概念,描述了IoC容器如何管理Bean的生命周期和依赖关系,它详细讲解了Bean的注册过程,包括... 目录1 控制反转1.1 什么是控制反转1.2 SpringBoot中的控制反转2 Ioc容器对Bea

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Spring IOC控制反转的实现解析

《SpringIOC控制反转的实现解析》:本文主要介绍SpringIOC控制反转的实现,IOC是Spring的核心思想之一,它通过将对象的创建、依赖注入和生命周期管理交给容器来实现解耦,使开发者... 目录1. IOC的基本概念1.1 什么是IOC1.2 IOC与DI的关系2. IOC的设计目标3. IOC

leetcode105 从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。 注意: 你可以假设树中没有重复的元素。 例如,给出 前序遍历 preorder = [3,9,20,15,7]中序遍历 inorder = [9,3,15,20,7] 返回如下的二叉树: 3/ \9 20/ \15 7   class Solution {public TreeNode buildTree(int[] pr

控制反转 的种类

之前对控制反转的定义和解释都不是很清晰。最近翻书发现在《Pro Spring 5》(免费电子版在文章最后)有一段非常不错的解释。记录一下,有道翻译贴出来方便查看。如有请直接跳过中文,看后面的原文。 控制反转的类型 控制反转的类型您可能想知道为什么有两种类型的IoC,以及为什么这些类型被进一步划分为不同的实现。这个问题似乎没有明确的答案;当然,不同的类型提供了一定程度的灵活性,但

PHP实现二叉树遍历(非递归方式,栈模拟实现)

二叉树定义是这样的:一棵非空的二叉树由根结点及左、右子树这三个基本部分组成,根据节点的访问位置不同有三种遍历方式: ① NLR:前序遍历(PreorderTraversal亦称(先序遍历)) ——访问结点的操作发生在遍历其左右子树之前。 ② LNR:中序遍历(InorderTraversal) ——访问结点的操作发生在遍历其左右子树之中(间)。 ③ LRN:后序遍历(PostorderT