自动调优工具AOE,让你的模型在昇腾平台上高效运行

2023-12-30 01:50

本文主要是介绍自动调优工具AOE,让你的模型在昇腾平台上高效运行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是AOE?

AOE(Ascend Optimization Engine)是一款自动调优工具,目的是为了充分利用有限的硬件资源,满足算子和整网的性能要求。

AOE通过生成调优策略、编译、在运行环境上验证的闭环反馈机制,不断迭代,最终得到最佳的调优策略,从而更充分利用硬件资源,提升网络的性能。

AOE的架构如下。

Application层:调优入口,支持如下。

  • AOE:这里的AOE表示AOE进程,是离线推理场景下的调优入口。

  • TFAdapter(TensorFlow Adapter):TensorFlow训练场景下的调优入口。

  • PyTorchAdapter(PyTorch Adapter):PyTorch训练场景下的调优入口。

Tuning层:调优模式,支持以下类型。

  • SGAT(SubGraph Auto Tuning):子图调优。一张完整的网络,会被拆分成多个子图。针对每一个子图,通过SGAT生成不同的调优策略。SGAT的调优算法通过获取每个迭代的调优策略性能数据,找到最优的调优策略,从而实现对应子图的最优性能。

  • OPAT(Operator Auto Tuning):算子调优。AOE将一张整图输入给OPAT,OPAT内部进行算子融合,将融合得到的图进行算子粒度切分,针对每一个融合算子子图生成不同的算子调优策略,从而实现最优的算子性能。

  • GDAT(Gradient Auto Tuning):梯度调优。分布式训练场景下,GDAT通过最大化反向计算与梯度聚合通信并行度,缩短通信拖尾时间,提升集群训练的性能。

Execute层:为执行层,支持编译(Compiler)和在运行环境上运行(Runner)。

AOE工作原理

如下以算子调优为例,介绍AOE的工作原理。

1. 将原始开源框架模型传入GE、FE进行图准备(InferShape、算子选择等)及子图拆分。

2. 进入算子编译阶段,根据拆分的子图信息匹配知识库。

  • 若能匹配到知识库:

- 未开启REPEAT_TUNE的场景,直接使用已有知识库中的调优策略编译算子。

- 开启REPEAT_TUNE的场景,通过AOE进行调优。

若调优后的结果优于当前已有的知识库,则会将调优后的结果存入用户自定义知识库,并使用自定义知识库中的调优策略编译算子。

若调优后的结果不优于当前已有的知识库,则不再生成用户自定义知识库,直接使用已有的知识库编译算子。

  • 若未匹配到知识库,则通过AOE进行调优。

- 若调优后的结果优于默认调优策略的性能,会将调优后的结果写入自定义知识库,并使用自定义知识库中的调优策略编译算子。

- 若调优后的结果不优于默认调优策略的性能,不生成自定义知识库,使用默认调优策略编译算子。

3. 推理场景下,编译完成后,生成适配昇腾AI处理器的离线模型文件。训练场景下,编译完成后,生成训练好的网络模型文件。

AOE使用场景

当算子性能或者网络性能不佳时,可以使用AOE进行调优。AOE调优支持的场景如下:

  • 离线推理

  • TensorFlow训练

  • PyTorch训练

  • 在线推理

  • IR构图

如何使用AOE进行调优?

如下以离线推理场景下Caffe网络的算子调优为例,介绍如何进行AOE调优。

1. 准备模型文件。

2. 配置环境变量。

  • 必选环境变量

- CANN组合包提供进程级环境变量设置脚本,供用户在进程中引用,以自动完成环境变量设置。执行命令参考如下,以下示例均为root或非root用户默认安装路径,请以实际安装路径为准。

# 以root用户安装toolkit包
/usr/local/Ascend/ascend-toolkit/set_env.sh 
# 以非root用户安装toolkit包
${HOME}/Ascend/ascend-toolkit/set_env.sh

- AOE工具依赖Python,以Python3.7.5为例,请以运行用户执行如下命令设置Python3.7.5的相关环境变量。

#用于设置python3.7.5库文件路径
export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:$LD_LIBRARY_PATH
#如果用户环境存在多个python3版本,则指定使用python3.7.5版本
export PATH=/usr/local/python3.7.5/bin:$PATH
  • 可选环境变量

export ASCEND_DEVICE_ID=1
export TUNE_BANK_PATH=/home/HwHiAiUser/custom_tune_bank
export TE_PARALLEL_COMPILER=7
export REPEAT_TUNE=True

命令中的参数含义如下。

  • ASCEND_DEVICE_ID:昇腾AI处理器的逻辑ID。

  • TUNE_BANK_PATH:调优后自定义知识库的存储路径。

  • TE_PARALLEL_COMPILER:开启算子的并行编译功能。

  • REPEAT_TUNE:是否重新发起调优。

3. 进行AOE调优,命令如下。命令中使用的目录以及文件均为样例,请以实际为准。

aoe --framework=0 --model=$HOME/module/resnet50.prototxt --weight=$HOME/module/resnet50.caffemodel --job_type=2

命令中的参数含义如下。

  • framework:原始网络模型的框架类型。0表示Caffee。

  • model:原始模型文件路径与文件名。

  • weight:原始模型权重文件路径与文件名。

  • job_type:调优模式,2表示算子调优。

4. 若提示如下信息,则说明AOE调优完成。

Aoe process finished

调优完成后,生成文件如下。

  • 自定义知识库:若满足自定义知识库生成条件则会生成自定义知识库。

  • om模型文件,存放路径为:

${WORK_PATH}/aoe_workspace/${model_name}_${timestamp}/tunespace/result/${model_name}_${timestamp}_tune.om

${WORK_PATH}:调优工作目录

${model_name}:模型名称

${timestamp}:时间戳

  • 算子调优结果文件:在执行调优的工作目录下实时生成命名为“aoe_result_opat_{timestamp}_{pidxxx}.json”的文件,记录调优过程中被调优的算子信息。示例如下。

"basic": {"tuning_name": "调优任务名","tuning_time(s)": 1827}"OPAT": {"model_baseline_performance(ms)": 113.588725,"model_performance_improvement": "0.31%","model_result_performance(ms)": 113.236731,"opat_tuning_result": "tuning successful","repo_modified_operators": {"add_repo_operators": [{"op_name": "strided_slice_10","op_type": "stridedsliced",……"repo_summary": {"repo_add_num": 2,"repo_hit_num": 17,"repo_reserved_num": 15,"repo_unsatisfied_num": 0,"repo_update_num": 2,"total_num": 19}

5. 调优完成后,请使用调优后的自定义知识库重新推理,验证性能是否提高。

以上就是AOE的简单介绍。关于更多内容,可以在昇腾文档中心查看,您也可在“昇腾社区在线课程”板块学习视频课程,学习过程中的任何疑问,都可以在“昇腾论坛”互动交流!

相关参考:

[1]昇腾文档中心

[2]昇腾社区在线课程

[3]昇腾论坛

这篇关于自动调优工具AOE,让你的模型在昇腾平台上高效运行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/551348

相关文章

基于Java实现回调监听工具类

《基于Java实现回调监听工具类》这篇文章主要为大家详细介绍了如何基于Java实现一个回调监听工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录监听接口类 Listenable实际用法打印结果首先,会用到 函数式接口 Consumer, 通过这个可以解耦回调方法,下面先写一个

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

基于Python打造一个全能文本处理工具

《基于Python打造一个全能文本处理工具》:本文主要介绍一个基于Python+Tkinter开发的全功能本地化文本处理工具,它不仅具备基础的格式转换功能,更集成了中文特色处理等实用功能,有需要的... 目录1. 概述:当文本处理遇上python图形界面2. 功能全景图:六大核心模块解析3.运行效果4. 相

springboot项目中常用的工具类和api详解

《springboot项目中常用的工具类和api详解》在SpringBoot项目中,开发者通常会依赖一些工具类和API来简化开发、提高效率,以下是一些常用的工具类及其典型应用场景,涵盖Spring原生... 目录1. Spring Framework 自带工具类(1) StringUtils(2) Coll