基于FPGA的CRC32_8原理与实现

2023-12-29 21:48
文章标签 实现 原理 fpga crc32

本文主要是介绍基于FPGA的CRC32_8原理与实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最近在开发万兆网mac,由于发送和接收要在数据的尾端添加或者校验CRC32_64,决定写一篇关于CRC的文章,此博客的意义在于帮助自己和大家理解FPGA并行CRC的实现方式,为了简单说明,以CRC32_8为例讲解。
1、CRC32_8生成多项式:CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+1
2、CRC校验原理
(1)将发送数据左移K位,右侧补零(其中K为生成多项式最高次幂);
(2)用移位补零后的数据对G(x)进行模2除法(其实就是异或运算);
(3)用得到的余数即为该数据的CRC校验码;
3、首先采用串行方式实现CRC32_8的校验功能
在这里插入图片描述 4、数据由高位依次输入,当输入最后1bit数据时,CRC寄存器中即为校验值,同时如果将D0时刻的表达式表示出来,则为并行CRC的计算公式。
CRC[0] = D[6] ^ D[0] ^ C[24] ^ C[30];
CRC[1] = D[7] ^ D[6] ^ D[1] ^ D[0] ^ C[24] ^ C[25] ^ C[30] ^ C[31];
CRC[2] = D[7] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ C[24] ^ C[25] ^ C[26] ^ C[30] ^ C[31];
CRC[3] = D[7] ^ D[3] ^ D[2] ^ D[1] ^ C[25] ^ C[26] ^ C[27] ^ C[31];
CRC[4] = D[6] ^ D[4] ^ D[3] ^ D[2] ^ D[0] ^ C[24] ^ C[26] ^ C[27] ^ C[28] ^ C[30];
CRC[5] = D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
CRC[6] = D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[2] ^ D[1] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31];
CRC[7] = D[7] ^ D[5] ^ D[3] ^ D[2] ^ D[0] ^ C[24] ^ C[26] ^ C[27] ^ C[29] ^ C[31];
CRC[8] = D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[24] ^ C[25] ^ C[27] ^ C[28];
CRC[9] = D[5] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[25] ^ C[26] ^ C[28] ^ C[29];

CRC[30] = D[7] ^ D[4] ^ C[22] ^ C[28] ^ C[31];
CRC[31] = D[5] ^ C[23] ^ C[29];
由于表中数据较长,在此不做全部列出。
5、FPGA中v代码

`timescale 1ns / 1psmodule CRC32_8_TEST(input clk,input rst_n,input clr,//同步清零input  din_vld,input [7:0] din,output reg dout_vld,output reg [31:0] dout//crc校验结果
);// polynomial: x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1
// data width: 8wire [7:0] D;
wire [31:0] C;assign D = din;
assign C = dout;always@(posedge clk or negedge rst_n)beginif(!rst_n)dout <= 32'hffff_ffff;else if(clr)dout <= 32'hffff_ffff;else if(din_vld)begindout[0] <= D[6] ^ D[0] ^ C[24] ^ C[30];dout[1] <= D[7] ^ D[6] ^ D[1] ^ D[0] ^ C[24] ^ C[25] ^ C[30] ^ C[31];dout[2] <= D[7] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ C[24] ^ C[25] ^ C[26] ^ C[30] ^ C[31];dout[3] <= D[7] ^ D[3] ^ D[2] ^ D[1] ^ C[25] ^ C[26] ^ C[27] ^ C[31];dout[4] <= D[6] ^ D[4] ^ D[3] ^ D[2] ^ D[0] ^ C[24] ^ C[26] ^ C[27] ^ C[28] ^ C[30];dout[5] <= D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[24] ^ C[25] ^ C[27] ^ C[28] ^ C[29] ^ C[30] ^ C[31];dout[6] <= D[7] ^ D[6] ^ D[5] ^ D[4] ^ D[2] ^ D[1] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30] ^ C[31];dout[7] <= D[7] ^ D[5] ^ D[3] ^ D[2] ^ D[0] ^ C[24] ^ C[26] ^ C[27] ^ C[29] ^ C[31];dout[8] <= D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[0] ^ C[24] ^ C[25] ^ C[27] ^ C[28];dout[9] <= D[5] ^ D[4] ^ D[2] ^ D[1] ^ C[1] ^ C[25] ^ C[26] ^ C[28] ^ C[29];dout[10] <= D[5] ^ D[3] ^ D[2] ^ D[0] ^ C[2] ^ C[24] ^ C[26] ^ C[27] ^ C[29];dout[11] <= D[4] ^ D[3] ^ D[1] ^ D[0] ^ C[3] ^ C[24] ^ C[25] ^ C[27] ^ C[28];dout[12] <= D[6] ^ D[5] ^ D[4] ^ D[2] ^ D[1] ^ D[0] ^ C[4] ^ C[24] ^ C[25] ^ C[26] ^ C[28] ^ C[29] ^ C[30];dout[13] <= D[7] ^ D[6] ^ D[5] ^ D[3] ^ D[2] ^ D[1] ^ C[5] ^ C[25] ^ C[26] ^ C[27] ^ C[29] ^ C[30] ^ C[31];dout[14] <= D[7] ^ D[6] ^ D[4] ^ D[3] ^ D[2] ^ C[6] ^ C[26] ^ C[27] ^ C[28] ^ C[30] ^ C[31];dout[15] <= D[7] ^ D[5] ^ D[4] ^ D[3] ^ C[7] ^ C[27] ^ C[28] ^ C[29] ^ C[31];dout[16] <= D[5] ^ D[4] ^ D[0] ^ C[8] ^ C[24] ^ C[28] ^ C[29];dout[17] <= D[6] ^ D[5] ^ D[1] ^ C[9] ^ C[25] ^ C[29] ^ C[30];dout[18] <= D[7] ^ D[6] ^ D[2] ^ C[10] ^ C[26] ^ C[30] ^ C[31];dout[19] <= D[7] ^ D[3] ^ C[11] ^ C[27] ^ C[31];dout[20] <= D[4] ^ C[12] ^ C[28];dout[21] <= D[5] ^ C[13] ^ C[29];dout[22] <= D[0] ^ C[14] ^ C[24];dout[23] <= D[6] ^ D[1] ^ D[0] ^ C[15] ^ C[24] ^ C[25] ^ C[30];dout[24] <= D[7] ^ D[2] ^ D[1] ^ C[16] ^ C[25] ^ C[26] ^ C[31];dout[25] <= D[3] ^ D[2] ^ C[17] ^ C[26] ^ C[27];dout[26] <= D[6] ^ D[4] ^ D[3] ^ D[0] ^ C[18] ^ C[24] ^ C[27] ^ C[28] ^ C[30];dout[27] <= D[7] ^ D[5] ^ D[4] ^ D[1] ^ C[19] ^ C[25] ^ C[28] ^ C[29] ^ C[31];dout[28] <= D[6] ^ D[5] ^ D[2] ^ C[20] ^ C[26] ^ C[29] ^ C[30];dout[29] <= D[7] ^ D[6] ^ D[3] ^ C[21] ^ C[27] ^ C[30] ^ C[31];dout[30] <= D[7] ^ D[4] ^ C[22] ^ C[28] ^ C[31];dout[31] <= D[5] ^ C[23] ^ C[29];end
endalways@(posedge clk or negedge rst_n)beginif(!rst_n)dout_vld <= 0;else dout_vld <= din_vld;
endendmodule

6、当8位数据输入为0xAB时,软件工具输出
在这里插入图片描述
ISE仿真输出
在这里插入图片描述
可知,当初始条件相同时,逻辑代码与工具生成的CRC校验是相同的,可以验证,编写的逻辑代码正确。
7、由CRC32_8可知CRC32_64的相关代码过程,由于原理基本相同,不在赘述。

这篇关于基于FPGA的CRC32_8原理与实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/550823

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Java编译生成多个.class文件的原理和作用

《Java编译生成多个.class文件的原理和作用》作为一名经验丰富的开发者,在Java项目中执行编译后,可能会发现一个.java源文件有时会产生多个.class文件,从技术实现层面详细剖析这一现象... 目录一、内部类机制与.class文件生成成员内部类(常规内部类)局部内部类(方法内部类)匿名内部类二、

SpringBoot实现数据库读写分离的3种方法小结

《SpringBoot实现数据库读写分离的3种方法小结》为了提高系统的读写性能和可用性,读写分离是一种经典的数据库架构模式,在SpringBoot应用中,有多种方式可以实现数据库读写分离,本文将介绍三... 目录一、数据库读写分离概述二、方案一:基于AbstractRoutingDataSource实现动态

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Java枚举类实现Key-Value映射的多种实现方式

《Java枚举类实现Key-Value映射的多种实现方式》在Java开发中,枚举(Enum)是一种特殊的类,本文将详细介绍Java枚举类实现key-value映射的多种方式,有需要的小伙伴可以根据需要... 目录前言一、基础实现方式1.1 为枚举添加属性和构造方法二、http://www.cppcns.co

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

MySQL双主搭建+keepalived高可用的实现

《MySQL双主搭建+keepalived高可用的实现》本文主要介绍了MySQL双主搭建+keepalived高可用的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录一、测试环境准备二、主从搭建1.创建复制用户2.创建复制关系3.开启复制,确认复制是否成功4.同

Java实现文件图片的预览和下载功能

《Java实现文件图片的预览和下载功能》这篇文章主要为大家详细介绍了如何使用Java实现文件图片的预览和下载功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... Java实现文件(图片)的预览和下载 @ApiOperation("访问文件") @GetMapping("

使用Sentinel自定义返回和实现区分来源方式

《使用Sentinel自定义返回和实现区分来源方式》:本文主要介绍使用Sentinel自定义返回和实现区分来源方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Sentinel自定义返回和实现区分来源1. 自定义错误返回2. 实现区分来源总结Sentinel自定

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义