用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现

2023-12-29 06:48

本文主要是介绍用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

很多公司都在为了提升程序的执行性能和降低服务器的运营成本,而放弃 Python 去选择其它编程语言,其实这样做并不是必须,因为 Python 完全可以胜任这些任务。

Python 社区最近做了大量关于性能的优化。CPython 3.6 重写了新的字典从而全面提升解析器的执行性能。由于引入更快的调用规则和字典查询缓存,CPython 3.7 甚至还要更快。

我们可以用 PyPy 的 Just-in-Time 来编译复杂的科学计算任务,NumPy 的测试套件也优化了和 C 扩展的兼容性,同时 PyPy 还计划于今年晚些时候做到和 Python 3.5 保持一致。

这些振奋人心的变化激励着我想要有所创新,Python 所擅长的领域众多,我选择了其中一个:Web 和 MicroServices 开发。

更多Python视频、源码、资料加群683380553免费获取

了解 Japronto!

Japronto 是一个全新的,为微服务量身打造的微框架。实现它的主要目标包含够快、可扩展和轻量化。的确它快的吓人,甚至远比 NodeJS 和 Go 还要快的多的多。要感谢 asyncio,让我可以同时编写同步和异步代码。

用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现

Python 的微框架(蓝色)、NodeJS 和 Go (绿色) 和 Japronto (紫色)

勘误表:用户 @heppu 提到,如果谨慎点用 Go 的 stdlib HTTP 服务器可以写出比上图的 Go 快 12% 的代码。另外 fasthttp 也是一个非常棒的 Go 服务器,同样的测试中它的性能几乎只比 Japronto 低 18%。真是太棒了!更多细节查可以看 https://github.com/squeaky-pl/japronto/pull/12 和 https://github.com/squeaky-pl/japronto/pull/14

用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现

 

我们可以看到其实 Meinheld WSGI 服务器已经和 NodeJS 和 Go 的性能差不多了。尽管它用的是阻塞式设计,但还是要比前面那四个要快的多,前面四个用的是异步的 Python 解决方案。所以,不要轻易相信别人那些关于异步系统总是比同步系统更快的说法,虽然都是并发处理的问题,但事实远不如想象的那么简单。

虽然我只是用 “Hello World” 来完成上面这个关于微框架的测试,但它清晰的展现了各种服务器框架的处理能力。

这些测试是在一台亚马逊 AWS EC2 的 c4.2xlarge 实例上完成的,它有 8 VCPUs,数据中心选在圣保罗区域,共享主机、HVM 虚拟化、普通磁盘。操作系统是 Ubuntu 16.04.1 LTS (Xenial Xerus),内核为 Linux 4.4.0–53-generic x86_64。操作系统显示的 CPU 是 Xeon® E5–2666 v3 @ 2.90GHz。Python 我用的版本是 3.6,刚从源码编译来的。

公平起见,所有程序,包括 Go,都只运行在单个处理器内核上。测试工具为 wrk,参数是 1 个线程,100 个链接和每个链接 24 个请求(累计并发 2400 次请求)。

用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现

HTTP 流水线(图片来自 Wikipedia)

HTTP 流水线在这里起着决定性的因素,因为 Japronto 用它来做执行并发请求的优化。

大多数服务器把来自客户端的流水线和非流水线请求都一视同仁,用同样的方法处理,并没有做针对性的优化。(实际上 Sanic 和 Meinheld 也是默默的把流水线请求当做非流水线来处理,这违反了 HTTP 1.1 协议)

简单来说,通过流水线技术,客户端不用等到服务器端返回,就可以在同一条 TCP 链接上继续发送后续的请求。为了保障通讯的完整性,服务器端会按照请求的顺序逐个把结果返回给客户端。

细节优化过程

当一堆小的 GET 请求被客户端以流水线打包发送过来,服务器端很可能只需要一次系统调用,读取一个 TCP 数据包就能拿到全部的请求。

系统调用,以及在内核空间到用户空间之间移动数据,相比起在进程内部移动数据,成本要高的多。这就是为什么不到万不得已,要尽可能少做系统调用的次数。

当 Japronto 收到数据并成功解析出请求序列时,它会尝试尽可能快的把这些请求执行完成,并以正确的顺序合并所有结果,然后只执行一次系统调用发送数据给客户端。实际上因为有 scatter/gather IO 这样的系统调用,合并的工作并不需要自己去完成,只不过 Japronto 暂时还没有用到这些功能。

然而事情并不总是那么完美,有时候请求需要耗费很长时间去处理,等待完成的过程增加了不必要的延迟。

当我们做优化时,有必要考虑系统调用的成本和请求的预期完成时间。

用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现

经过优化 Japronto 拿到了 1,214,440 RPS 的成绩

除了利用客户端流水线请求,和优化调用,还有一些其它可用的技术。

Japronto 几乎都是用 C 写的。包含解析器、协议、链接管理、路由、请求、应答等对象都是用 C 扩展写的。

Japronto 力图做到 Python 的懒加载,比如,协议头的字典只有在被试图请求到时才会被创建,另外一系列的对象也只有在第一次使用时才会被创建。

Japronto 使用超牛逼的 picohttpparser C 库来解析状态、协议头以及分片的 HTTP 消息体。Picohttpparser 是直接调用现代 CPU 集成的 SSE4.2 扩展文本处理指令去快速匹配 HTTP 标记的边界(那些 10 年前的老 x86_64 CPU 都有这玩意儿)。I/O 用到了超棒的 uvloop,它是一个 libuv 的封装,在最底层,它是调用 epoll 来提供异步读写通知。

用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现

Picohttpparser 依赖 SSE4.2 和 CMPESTRI x86_64 的特性做解析

Python 是有垃圾收集功能的语言,为避免不必要的增加垃圾收集器的压力,在设计高性能系统时一定要多加注意。Japronto 的内部被设计的尝试避免循环引用和尽可能少的分配、释放内存,它会预先申请一块区域来存放对象各种,同时尝试在后续请求中重用那些没有被继续引用的 Python 的对象,而不是将那些对象直接扔掉。

这些预先申请的内存的大小被固定为 4KB 的倍数。内部结构会非常小心和频繁的使用这些连续的内存区域,以减少缓存失效的可能性。

Japronto 会尽可能避免不必要的缓存间复制,只在正确的位置执行操作。比如,在处理路由时,先做 URL 解码再进行路由匹配。

开源贡献者们,我需要你们的帮助

我已经连续不断的开发 Japronto 超过三个月,不光在每一个工作日,周末也无休。除了每天的工作外,我把所有时间精力都投入到这个项目上了。

我想是时候和社区分享我的劳动果实了。

Japronto 已经可靠的实现了下面这些功能:

  • 实现 HTTP 1.x 并且支持分片上传完整支持 HTTP 流水线可配置是否让链接 Keep-alive支持同步和异步视图Master-multiworker 多任务处理代码热加载简单易用的路由规则

结束语

上面提到的所有技术不只适用于 Python,也同样可以被应用到其它语言,如 Ruby、JavaScript,甚至 PHP 等。

这篇关于用Python实现每秒处理120万次 HTTP 请求,你敢信?这已成为实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/548674

相关文章

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

Android实现任意版本设置默认的锁屏壁纸和桌面壁纸(两张壁纸可不一致)

客户有些需求需要设置默认壁纸和锁屏壁纸  在默认情况下 这两个壁纸是相同的  如果需要默认的锁屏壁纸和桌面壁纸不一样 需要额外修改 Android13实现 替换默认桌面壁纸: 将图片文件替换frameworks/base/core/res/res/drawable-nodpi/default_wallpaper.*  (注意不能是bmp格式) 替换默认锁屏壁纸: 将图片资源放入vendo

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss