python生成随机数:uniform(), randint(), gauss(), expovariate()

2023-12-29 00:38

本文主要是介绍python生成随机数:uniform(), randint(), gauss(), expovariate(),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 模块:random内建模块,伪随机数生成器

使用Mersenne Twister的伪随机数生成器PRNG进行生成,它以一个确定的数字作为属于,并为其生成一个随机数;为了安全起见,不要用PRNG生成随机数,要用secrets模块的真随机数TRNG生成;

2 播种随机数,即用随机数种子seed控制随机数

>>> import random
## 1、当不指定种子seed时,PRNG每次生成的数不一样
>>> print('Random Number 1=>',random.random())
Random Number 1=> 0.21008902332926982
>>> print('Random Number 2=>',random.random())
Random Number 2=> 0.434434837731393## 2、当指定种子seed时,PRNG每次生成的数是一样的,所以称为伪随机数
>>> random.seed(42)
>>> print('Random Number 1=>',random.random())
Random Number 1=> 0.6394267984578837
>>> random.seed(42)
>>> print('Random Number 2=>',random.random())
Random Number 2=> 0.6394267984578837

*3 在已知的范围内生成随机数,例如[2, 5],那就可以random.random()3 + 2, uniform(2,5), randint(2,5)

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
## 1、random.random()*3 + 2
>>> print('Random Number in range(2,8)=>', random.random()*6+2)
Random Number in range(2,8)=> 2.1500645313360014## 2、uniform():获取开始值和结束值作为参数,返回一个浮点型的随机数
>>> print('Random Number in range(2,8)=>', random.uniform(2,8))
Random Number in range(2,8)=> 3.6501759102147155## 3、randint():和uniform相似,不同的是返回值为一个整数
>>> print('Random Number in range(2,8)=>', random.randint(2,8))
Random Number in range(2,8)=> 3

4 从列表中随机选择一个值:choice(), choices()

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
## 1、choice会从这个列表中随机选择一个值
>>> a=[5,9,20,10,2,8]
>>> print('Randomly picked number=>',random.choice(a))
Randomly picked number=> 9
>>> print('Randomly picked number=>',random.choice(a))
Randomly picked number=> 8
>>> print('Randomly picked number=>',random.choice(a))
Randomly picked number=> 5## 2、choices会从这个列表中随机选择多个值(随机数的数量可以超过列表程度)
>>> print('Randomly picked number=>',random.choices(a,k=3))
Randomly picked number=> [5, 20, 5]
>>> print('Randomly picked number=>',random.choices(a,k=3))
Randomly picked number=> [9, 10, 5]
>>> print('Randomly picked number=>',random.choices(a,k=3))
Randomly picked number=> [9, 10, 10]## 3、choices利用weights将数组作为权重传递,增加每个值被选取的可能性
>>> print('Randomly picked number=>',random.choices(a,weights=[1,1,1,3,1,1],k=3))
Randomly picked number=> [5, 5, 2]
>>> print('Randomly picked number=>',random.choices(a,weights=[1,1,1,3,1,1],k=3))
Randomly picked number=> [10, 2, 10]
>>> print('Randomly picked number=>',random.choices(a,weights=[1,1,1,3,1,1],k=3))
Randomly picked number=> [10, 8, 10]

5 shuffling改组列表,对列表随机重排

>>> print('Original list=>',a)
Original list=> [5, 9, 20, 10, 2, 8]
>>> random.shuffle(a)
>>> print('Shuffled list=>',a)
Shuffled list=> [10, 5, 8, 9, 2, 20]

6 根据概率分布生成随机数:gauss(), expovariate()

(1)高斯分布gauss()

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
>>> import random
>>> import matplotlib.pyplot as plt
>>> temp = []
>>> for i in range(1000):
... temp.append(random.gauss(0,1))
...
>>> plt.hist(temp, bins=30)
>>> plt.show()

在这里插入图片描述
(2)变数分布expovariate():以lambda的值作为参数,lambda为正,则返回从0到正无穷的值;如果lambda为负,则返回从负无穷到0的值

>>> print('Random number from exponential distribution=>',random.expovariate(10))
Random number from exponential distribution=> 0.012164560954097013
>>> print('Random number from exponential distribution=>',random.expovariate(-1))
Random number from exponential distribution=> -0.6461397037921695

(3)伯努利分布
(4)均匀分布
(5)二项分布
(6)正太分布
(7)泊松分布

这篇关于python生成随机数:uniform(), randint(), gauss(), expovariate()的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547824

相关文章

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Python装饰器之类装饰器详解

《Python装饰器之类装饰器详解》本文将详细介绍Python中类装饰器的概念、使用方法以及应用场景,并通过一个综合详细的例子展示如何使用类装饰器,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. 引言2. 装饰器的基本概念2.1. 函数装饰器复习2.2 类装饰器的定义和使用3. 类装饰

Python 交互式可视化的利器Bokeh的使用

《Python交互式可视化的利器Bokeh的使用》Bokeh是一个专注于Web端交互式数据可视化的Python库,本文主要介绍了Python交互式可视化的利器Bokeh的使用,具有一定的参考价值,感... 目录1. Bokeh 简介1.1 为什么选择 Bokeh1.2 安装与环境配置2. Bokeh 基础2

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中