Python中可迭代对象、迭代器以及iter()函数的两个用法详解

2023-12-29 00:08

本文主要是介绍Python中可迭代对象、迭代器以及iter()函数的两个用法详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在Python中,有这两个概念容易让人混淆。第一个是可迭代对象(Iterable),第二个是迭代器(Iterator),第三个是生成器(Generator),这里暂且不谈生成器。

可迭代对象

列表、元组、字符串、字典等都是可迭代对象,可以使用for循环遍历出所有元素的都可以称为可迭代对象(Iterable)。在Python的内置数据结构中定义了Iterable这个类,在collections.abc模块中,我们可以用这个来检测是否为可迭代对象

>>> from collections import Iterable
>>> a = [1,2,3]
>>> isinstance(a, Iterable)
>>> True
>>> b = 'abcd'
>>> isinstance(b, Iterable)
>>> True

这些数据结构之所以能称之为Iterable,是因为其内部实现了__iter__()方法,从而可迭代。当我们使用for循环时,解释器会调用内置的iter()函数,调用前首先会检查对象是否实现了__iter__()方法,如果有就调用它获取一个迭代器(接下来会讲)。加入没有__iter__()方法,但是实现了__getitem__()方法,解释器会创建一个迭代器并且按顺序获取元素。如果这两个方法都没有找到,就会抛出TypeError异常。下面我们自定义对象,分别实现这两个方法(getitem(), iter())

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
class MyObj:def __init__(self, iterable):self._iterable = list(iterable)def __getitem__(self, item):return self._iterable[item]obj = MyObj([1,2,3])
for i in obj:print(i)

如上所示,这里没有实现__iter__方法,只实现了__getitem__方法,也使得Myobj称为可迭代对象。
下面我们实现__iter__方法,这里使用了yield语法用来产出值(这里需要生成器的知识)

class MyObj:def __init__(self, iterable):self._iterable = list(iterable)def __iter__(self):index = 0while True:try:yield self._iterable[index]except IndexError:breakindex += 1obj = MyObj([1,2,3])
for i in obj:print(i)

这里同样让对象称为可迭代对象。

迭代器

迭代器是一个可以记住遍历的位置的对象。
迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束。迭代器只能往前不会后退。
在这里插入图片描述如上图所示,迭代器(Iterator)继承可迭代(Iterable),迭代器必须实现__iter__方法和__next__方法。其中__next__方法用于产出下一个元素。

由继承图可见,迭代器一定是可迭代对象,可迭代对象不一定是迭代器

迭代器有两个基本的方法:iter() 和 next()。

我们使用iter(iterable)即可把可迭代对象转换成迭代器
使用next(iterator)来获取迭代器的下一个值

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
>>> a = [3,4,5]
>>> a
>>> [3, 4, 5]
>>> iter(a)
>>> <list_iterator object at 0x10b130ba8>
>>> iterator = iter(a)
>>> next(iterator)
>>> 3
>>> next(iterator)
>>> 4
>>> next(iterator)
>>> 5
>>> next(iterator)
Traceback (most recent call last):File "<input>", line 1, in <module>
StopIteration

如上所示,因为对象实现了__next__方法,我们可以通过next(iterator)来获取迭代器的下一个值,直到没有值了,抛出StopIteration异常结束。

迭代器的背后

迭代器Iterator是一个抽象基类,它定义在_collections_abc.py

Iterator源码如下

class Iterator(Iterable):__slots__ = ()@abstractmethoddef __next__(self):'Return the next item from the iterator. When exhausted, raise StopIteration'raise StopIterationdef __iter__(self):return self@classmethoddef __subclasshook__(cls, C):if cls is Iterator:return _check_methods(C, '__iter__', '__next__')return NotImplemented

可以看到,它实现了__subclasshook__方法,即不用显式继承Iterator,只需要实现__iter____next__方法即可称为Iterator的虚拟子类。这里凸现了Python的鸭子类型,实现特定的“协议”即可拥有某种行为。

另外,它自己也定义了__iter__方法,当我们使用iter(Iterator)时直接返回自己,不做任何处理。

iter()函数的两个用法

官方文档中给出了说明:

iter(iterable) -> iterator
iter(callable, sentinel) -> iteratorGet an iterator from an object.  In the first form, the argument must
supply its own iterator, or be a sequence.
In the second form, the callable is called until it returns the sentinel.

第一个用法:iter(iterable) -> iterator (把可迭代对象转换为迭代器)
第二个用法:iter(callable, sentinel) -> iterator (第一个参数:任何可调用对象,可以是函数,第二个是标记值,当可调用对象返回这个值时,迭代器抛出StopIteration异常,而不产出标记值)

'''
遇到问题没人解答?小编创建了一个Python学习交流QQ群:778463939
寻找有志同道合的小伙伴,互帮互助,群里还有不错的视频学习教程和PDF电子书!
'''
>>> from random import choice
>>> values = [1,2,3,4,5,6,7]
>>> def test_iter():
>>>     return choice(values)
>>> it = iter(test_iter, 2)
>>> it
>>> <callable_iterator object at 0x10b130b00>
>>> for i in it:
>>>     print(i)
>>> 7
>>> 1
>>> 7
>>> 3
>>> 1

上面代码的流程:test_iter函数从values列表中随机挑选一个值并返回,调用iter(callable, sentinel)函数,把sentinel标记值设置为2,返回一个callable_iterator实例,遍历这个特殊的迭代器,如果函数返回标记值2,直接抛出异常退出程序。这就是iter函数的鲜为人知的另一个用法。

这篇关于Python中可迭代对象、迭代器以及iter()函数的两个用法详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/547752

相关文章

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML

Python实现无痛修改第三方库源码的方法详解

《Python实现无痛修改第三方库源码的方法详解》很多时候,我们下载的第三方库是不会有需求不满足的情况,但也有极少的情况,第三方库没有兼顾到需求,本文将介绍几个修改源码的操作,大家可以根据需求进行选择... 目录需求不符合模拟示例 1. 修改源文件2. 继承修改3. 猴子补丁4. 追踪局部变量需求不符合很

java中反射(Reflection)机制举例详解

《java中反射(Reflection)机制举例详解》Java中的反射机制是指Java程序在运行期间可以获取到一个对象的全部信息,:本文主要介绍java中反射(Reflection)机制的相关资料... 目录一、什么是反射?二、反射的用途三、获取Class对象四、Class类型的对象使用场景1五、Class

在java中如何将inputStream对象转换为File对象(不生成本地文件)

《在java中如何将inputStream对象转换为File对象(不生成本地文件)》:本文主要介绍在java中如何将inputStream对象转换为File对象(不生成本地文件),具有很好的参考价... 目录需求说明问题解决总结需求说明在后端中通过POI生成Excel文件流,将输出流(outputStre

golang 日志log与logrus示例详解

《golang日志log与logrus示例详解》log是Go语言标准库中一个简单的日志库,本文给大家介绍golang日志log与logrus示例详解,感兴趣的朋友一起看看吧... 目录一、Go 标准库 log 详解1. 功能特点2. 常用函数3. 示例代码4. 优势和局限二、第三方库 logrus 详解1.