本文主要是介绍(imooc)神经网络简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
课程背景



什么是神经网络


图像语音密集矩阵
文本稀疏矩阵
课程安排

网络结构

eg 在图中四个隐含层,一个输出层
从x到y 一个预测的过程
更深的网络比更宽的网络在计算上节省,当深度层增加,每一层增加一个解,见微知著,不断剖析,对应神经网络的深度增长。
每一个神经元的设计体现非线性分析
对每一个神经元

这是一个神经元结点的结构

第一部分:对输入线性组合
第二部分:进行非线性处理 g(z)对线性组合转化成非线性的结果
逻辑回归
最小的结构单元:每个神经元节点独立具有判断问题的能力,该结点本身是一个逻辑回归的模型

对单独一个神经元

同样可以进行机器学习的过程,左侧输入,右侧输出(预测值),通过W和B这两个参数对x进行线性化,通过激励函数的到预测值
激励函数


模拟神经元被激发的状态变化(非线性),对大脑中的传递递质的动作模拟
常用神经元

RELU简单常用,是首选
损失函数


梯度下降
通过渐进性方式调整整个函数的形态or performance

调整参数为W b 找到合理组合使得机器学习得到的y值与现实中监督的真正y值一致,从而指导预测结果

根据运算结果预测值x0在凸的部分进行数学处理。。。。

(:=代表同步更新)
在进行运算,指导w.b趋向稳定值
网络向量化

传播过程

输入到隐含层,四个隐含层生成一个输出值,即训练得到的y值


写成对应的矩阵表达式

把这种简单模型进行推广
对比较大的神经网络
得到层与层之间的关系

网络梯度下降
*对神经元的参数的调教(反向传播)
通过运算结果逆向调整wb参数
向前传播的规则

对每一层

训练过程

eg。简单神经网络


再进行运算,再更新。
反复这两个训练过程

按层计算,算好后更新
总结

这篇关于(imooc)神经网络简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!