CNN实现对手写字体的迭代

2023-12-28 19:12
文章标签 实现 cnn 字体 迭代 对手

本文主要是介绍CNN实现对手写字体的迭代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入库

import torchvision
import torch
from torchvision.transforms import ToTensor
from torch import nn
import matplotlib.pyplot as plt

导入手写字体数据

train_ds=torchvision.datasets.MNIST('data/',train=True,transform=ToTensor(),download=True)
test_ds=torchvision.datasets.MNIST('data/',train=False,transform=ToTensor(),download=True)
train_dl=torch.utils.data.DataLoader(train_ds,batch_size=64,shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds,batch_size=46)
imgs,labels=next(iter(train_dl))
print(imgs.shape)
print(labels.shape)

从上述代码中可以看到,train_dl返回的图片数据是四维的,4个维度分别代表批次、通道数、高度和宽度(batch,channel,height,width),这正是PyTorch下卷积模型所需要的图片输入格式

创建卷积模型并训练

下面创建卷积模型来识别MNIST手写数据集。我们所创建的卷积模型先试用两个卷积层和两个池化层,然后将最后一个池化的输出展平为二维数据形式连接到全连接层,最后是输出层,中间的每一层都是用ReLU函数激活,输出层的输出张量长度为10,与类别数一致。代码如下

class Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=torch.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x#判断当前可用的device,如果显卡可用,就设置为cuda,否则设置为cpu
device="cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))#初始化模型,并使用.to()方法将其上传到device
#如果GPU可以用,会上传到显存,如果device是CPU,依保留在内存
model=Model().to(device)  # 初始化模型并设置设备
print(model)loss_fn=nn.CrossEntropyLoss() # 初始化交叉熵损失函数optimizer=torch.optim.SGD(model.parameters(),lr=0.001) # 初始化优化器def train(dataloader,model,loss_fn,optimizer):size=len(dataloader.dataset)  # 获取当前数据集样本总数量num_batches=len(dataloader)  #获得当前dataloader总批次数# train_loss用于累计所有批次的损失之和,correct用于累计预测正确的样本总数train_loss,correct=0,0for X,y in dataloader:  #对dataloader进行迭代X,y=X.to(device),y.to(device)  #每一批次的数据设置为使用当前device进行预测,并计算一个批次的损失pred=model(X)loss=loss_fn(pred,y)  # 返回的是平均损失#使用反向传播算法,根据损失优化模型参数optimizer.zero_grad()  #将模型参数的梯度全部归零loss.backward()  # 损失反向传播,计算模型参数梯度optimizer.step()  # 根据梯度优化参数with torch.no_grad():# correct 用于累计预测正确的样本总数correct+=(pred.argmax(1)==y).type(torch.float).sum().item()#train_loss用于累计所有批次的损失之和train_loss+=loss.item()#train_loss是所有批次的损失之和,所以计算全部样本的平均损失时需要处于总批次数train_loss/=num_batches#correct是预测正确的样本总是,若计算整个epoch总体正确率,需除以样本总数量correct/=sizereturn train_loss,correctdef test(dataloader,model):size=len(dataloader.dataset)num_batches=len(dataloader)test_loss,correct=0,0with torch.no_grad():for X,y in dataloader:X,y=X.to(device),y.to(device)pred=model(X)test_loss+=loss_fn(pred,y).item()correct+=(pred.argmax(1)==y).type(torch.float).sum().item()test_loss/=num_batchescorrect/=sizereturn test_loss,correctepochs=50  #一个epoch代表对全部数据训练一遍train_loss=[]  #每个epoch训练中训练数据集的平均损失被添加到此列表
train_acc=[] #每个epoch训练中训练数据集的平均正确率被添加到此列表
test_loss=[]  #每个epoch训练中测试数据集的平均损失被添加到此列表
test_acc=[] #每个epoch训练中测试数据集的平均正确率被添加到此列表for epoch in range(epochs):#调用train()函数训练epoch_loss,epoch_acc=train(train_dl,model,loss_fn,optimizer)#调用test()函数测试epoch_test_loss,epoch_test_acc=test(test_dl,model)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)#定义一个打印模版template=("epoch:{:2d},train_loss:{:.5f},train_acc:{:.1f}%,test_loss:{:.5f},test_acc:{:.1f}%")#输出当前的epoch的训练集损失、训练集正确率、测试集损失、测试集正确率print(template.format(epoch,epoch_loss,epoch_acc*100,epoch_test_loss,epoch_test_acc*100))print("Done!")plt.plot(range(1,epochs+1),train_loss,label="train_loss")
plt.plot(range(1,epochs+1),test_loss,label='test_loss',ls="--")
plt.xlabel('epoch')
plt.legend()
plt.show()plt.plot(range(1, epochs + 1), train_acc, label="train_acc")
plt.plot(range(1, epochs + 1), test_acc, label='test_acc', ls="--")
plt.xlabel('acc')
plt.legend()
plt.show()

函数式API

import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=F.max_pool2d(F.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=F.max_pool2d(F.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=F.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x

这篇关于CNN实现对手写字体的迭代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546995

相关文章

基于C++的UDP网络通信系统设计与实现详解

《基于C++的UDP网络通信系统设计与实现详解》在网络编程领域,UDP作为一种无连接的传输层协议,以其高效、低延迟的特性在实时性要求高的应用场景中占据重要地位,下面我们就来看看如何从零开始构建一个完整... 目录前言一、UDP服务器UdpServer.hpp1.1 基本框架设计1.2 初始化函数Init详解

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoo WebFlux+MongoDB实现非阻塞API过程

《SpringBooWebFlux+MongoDB实现非阻塞API过程》本文介绍了如何使用SpringBootWebFlux和MongoDB实现非阻塞API,通过响应式编程提高系统的吞吐量和响应性能... 目录一、引言二、响应式编程基础2.1 响应式编程概念2.2 响应式编程的优势2.3 响应式编程相关技术

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Nginx更新SSL证书的实现步骤

《Nginx更新SSL证书的实现步骤》本文主要介绍了Nginx更新SSL证书的实现步骤,包括下载新证书、备份旧证书、配置新证书、验证配置及遇到问题时的解决方法,感兴趣的了解一下... 目录1 下载最新的SSL证书文件2 备份旧的SSL证书文件3 配置新证书4 验证配置5 遇到的http://www.cppc

Nginx之https证书配置实现

《Nginx之https证书配置实现》本文主要介绍了Nginx之https证书配置的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起... 目录背景介绍为什么不能部署在 IIS 或 NAT 设备上?具体实现证书获取nginx配置扩展结果验证

SpringBoot整合 Quartz实现定时推送实战指南

《SpringBoot整合Quartz实现定时推送实战指南》文章介绍了SpringBoot中使用Quartz动态定时任务和任务持久化实现多条不确定结束时间并提前N分钟推送的方案,本文结合实例代码给大... 目录前言一、Quartz 是什么?1、核心定位:解决什么问题?2、Quartz 核心组件二、使用步骤1