CNN实现对手写字体的迭代

2023-12-28 19:12
文章标签 实现 cnn 字体 迭代 对手

本文主要是介绍CNN实现对手写字体的迭代,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导入库

import torchvision
import torch
from torchvision.transforms import ToTensor
from torch import nn
import matplotlib.pyplot as plt

导入手写字体数据

train_ds=torchvision.datasets.MNIST('data/',train=True,transform=ToTensor(),download=True)
test_ds=torchvision.datasets.MNIST('data/',train=False,transform=ToTensor(),download=True)
train_dl=torch.utils.data.DataLoader(train_ds,batch_size=64,shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds,batch_size=46)
imgs,labels=next(iter(train_dl))
print(imgs.shape)
print(labels.shape)

从上述代码中可以看到,train_dl返回的图片数据是四维的,4个维度分别代表批次、通道数、高度和宽度(batch,channel,height,width),这正是PyTorch下卷积模型所需要的图片输入格式

创建卷积模型并训练

下面创建卷积模型来识别MNIST手写数据集。我们所创建的卷积模型先试用两个卷积层和两个池化层,然后将最后一个池化的输出展平为二维数据形式连接到全连接层,最后是输出层,中间的每一层都是用ReLU函数激活,输出层的输出张量长度为10,与类别数一致。代码如下

class Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=torch.max_pool2d(torch.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=torch.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x#判断当前可用的device,如果显卡可用,就设置为cuda,否则设置为cpu
device="cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))#初始化模型,并使用.to()方法将其上传到device
#如果GPU可以用,会上传到显存,如果device是CPU,依保留在内存
model=Model().to(device)  # 初始化模型并设置设备
print(model)loss_fn=nn.CrossEntropyLoss() # 初始化交叉熵损失函数optimizer=torch.optim.SGD(model.parameters(),lr=0.001) # 初始化优化器def train(dataloader,model,loss_fn,optimizer):size=len(dataloader.dataset)  # 获取当前数据集样本总数量num_batches=len(dataloader)  #获得当前dataloader总批次数# train_loss用于累计所有批次的损失之和,correct用于累计预测正确的样本总数train_loss,correct=0,0for X,y in dataloader:  #对dataloader进行迭代X,y=X.to(device),y.to(device)  #每一批次的数据设置为使用当前device进行预测,并计算一个批次的损失pred=model(X)loss=loss_fn(pred,y)  # 返回的是平均损失#使用反向传播算法,根据损失优化模型参数optimizer.zero_grad()  #将模型参数的梯度全部归零loss.backward()  # 损失反向传播,计算模型参数梯度optimizer.step()  # 根据梯度优化参数with torch.no_grad():# correct 用于累计预测正确的样本总数correct+=(pred.argmax(1)==y).type(torch.float).sum().item()#train_loss用于累计所有批次的损失之和train_loss+=loss.item()#train_loss是所有批次的损失之和,所以计算全部样本的平均损失时需要处于总批次数train_loss/=num_batches#correct是预测正确的样本总是,若计算整个epoch总体正确率,需除以样本总数量correct/=sizereturn train_loss,correctdef test(dataloader,model):size=len(dataloader.dataset)num_batches=len(dataloader)test_loss,correct=0,0with torch.no_grad():for X,y in dataloader:X,y=X.to(device),y.to(device)pred=model(X)test_loss+=loss_fn(pred,y).item()correct+=(pred.argmax(1)==y).type(torch.float).sum().item()test_loss/=num_batchescorrect/=sizereturn test_loss,correctepochs=50  #一个epoch代表对全部数据训练一遍train_loss=[]  #每个epoch训练中训练数据集的平均损失被添加到此列表
train_acc=[] #每个epoch训练中训练数据集的平均正确率被添加到此列表
test_loss=[]  #每个epoch训练中测试数据集的平均损失被添加到此列表
test_acc=[] #每个epoch训练中测试数据集的平均正确率被添加到此列表for epoch in range(epochs):#调用train()函数训练epoch_loss,epoch_acc=train(train_dl,model,loss_fn,optimizer)#调用test()函数测试epoch_test_loss,epoch_test_acc=test(test_dl,model)train_loss.append(epoch_loss)train_acc.append(epoch_acc)test_loss.append(epoch_test_loss)test_acc.append(epoch_test_acc)#定义一个打印模版template=("epoch:{:2d},train_loss:{:.5f},train_acc:{:.1f}%,test_loss:{:.5f},test_acc:{:.1f}%")#输出当前的epoch的训练集损失、训练集正确率、测试集损失、测试集正确率print(template.format(epoch,epoch_loss,epoch_acc*100,epoch_test_loss,epoch_test_acc*100))print("Done!")plt.plot(range(1,epochs+1),train_loss,label="train_loss")
plt.plot(range(1,epochs+1),test_loss,label='test_loss',ls="--")
plt.xlabel('epoch')
plt.legend()
plt.show()plt.plot(range(1, epochs + 1), train_acc, label="train_acc")
plt.plot(range(1, epochs + 1), test_acc, label='test_acc', ls="--")
plt.xlabel('acc')
plt.legend()
plt.show()

函数式API

import torch.nn.functional as Fclass Model(nn.Module):def __init__(self):super().__init__()self.conv1=nn.Conv2d(1,6,5)   #初始化第一个卷积层self.conv2=nn.Conv2d(6,16,5)  #初始化第二个卷积层self.liner_1=nn.Linear(16*4*4,256)  #初始化全连接层16*4*4为输入的特征,256为输出的特征#就是将一个大小为16×4×4的输入特征映射到一个大小为256的输出特征空间中self.liner_2=nn.Linear(256,10)  #初始化输出层def forward(self,input):#调用第一个卷积层和池化层x=F.max_pool2d(F.relu(self.conv1(input)),2)#调用第二个卷积层和池化层x=F.max_pool2d(F.relu(self.conv2(x)),2)# view()方法将数据展平为二维形式# torch.Size([64,16,4,4])->torch.Size([64,16*4*4])x=x.view(-1,16*4*4)x=F.relu(self.liner_1(x))  # 全连接层x=self.liner_2(x)  #输出层return x

这篇关于CNN实现对手写字体的迭代的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546995

相关文章

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

Android实现在线预览office文档的示例详解

《Android实现在线预览office文档的示例详解》在移动端展示在线Office文档(如Word、Excel、PPT)是一项常见需求,这篇文章为大家重点介绍了两种方案的实现方法,希望对大家有一定的... 目录一、项目概述二、相关技术知识三、实现思路3.1 方案一:WebView + Office Onl

C# foreach 循环中获取索引的实现方式

《C#foreach循环中获取索引的实现方式》:本文主要介绍C#foreach循环中获取索引的实现方式,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、手动维护索引变量二、LINQ Select + 元组解构三、扩展方法封装索引四、使用 for 循环替代

Spring Security+JWT如何实现前后端分离权限控制

《SpringSecurity+JWT如何实现前后端分离权限控制》本篇将手把手教你用SpringSecurity+JWT搭建一套完整的登录认证与权限控制体系,具有很好的参考价值,希望对大家... 目录Spring Security+JWT实现前后端分离权限控制实战一、为什么要用 JWT?二、JWT 基本结构

Java实现优雅日期处理的方案详解

《Java实现优雅日期处理的方案详解》在我们的日常工作中,需要经常处理各种格式,各种类似的的日期或者时间,下面我们就来看看如何使用java处理这样的日期问题吧,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言一、日期的坑1.1 日期格式化陷阱1.2 时区转换二、优雅方案的进阶之路2.1 线程安全重构2

Android实现两台手机屏幕共享和远程控制功能

《Android实现两台手机屏幕共享和远程控制功能》在远程协助、在线教学、技术支持等多种场景下,实时获得另一部移动设备的屏幕画面,并对其进行操作,具有极高的应用价值,本项目旨在实现两台Android手... 目录一、项目概述二、相关知识2.1 MediaProjection API2.2 Socket 网络