牛客网考研机试题集合:Problem C(求最大素因数)

2023-12-28 18:08

本文主要是介绍牛客网考研机试题集合:Problem C(求最大素因数),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

思路:

2^32大约有10位数

1)因为整数最多只有一个大于sqrt(n)的素数,先使用素数筛法,删选100000以内的所有素数。

2)将字符串中数字拼接,转化为整数(stoi函数),分解该整数的素因数,求出最大的。

3)由字符串获得整数也可以使用

sum=0;
if(isdigit(s[i]){sum=sum*10+s[i]-'0';
}

AC代码:

#include<bits/stdc++.h>
using namespace std;
const int MAXSIZE=10000;vector<int> prime;
int mark[100001];
void init();
int maxPrime(int x);
int main() {int n;init();while(cin>>n) {string s;for(int i=0; i<n; i++) {cin>>s;int len=s.length();string tmp;for(int i=0; i<len; i++) {if(isdigit(s[i])) {tmp+=s[i];}}if(tmp.size()==0) {cout<<0<<endl;} else {int r=stoi(tmp);cout<<maxPrime(r)<<endl;}}}return 0;
}
void init() {fill(mark,mark+100001,0);for(int i=2; i<=100000; i++) {if(mark[i]==1) {continue;}prime.push_back(i);if(i>=1000) continue;for(int j=i*i; j<=100000; j+=i) {mark[j]=1;}}
}
int maxPrime(int x) {//set<int> ret;int ret;int size=prime.size();for(int i=0; i<size; i++) {while(x%prime[i]==0) {ret=prime[i];x/=prime[i];}if(x==1) {break;}}if(x!=1) {ret=x;}return ret;
}

 

这篇关于牛客网考研机试题集合:Problem C(求最大素因数)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546808

相关文章

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

关于集合与数组转换实现方法

《关于集合与数组转换实现方法》:本文主要介绍关于集合与数组转换实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、Arrays.asList()1.1、方法作用1.2、内部实现1.3、修改元素的影响1.4、注意事项2、list.toArray()2.1、方

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

详解C++中类的大小决定因数

《详解C++中类的大小决定因数》类的大小受多个因素影响,主要包括成员变量、对齐方式、继承关系、虚函数表等,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录1. 非静态数据成员示例:2. 数据对齐(Padding)示例:3. 虚函数(vtable 指针)示例:4. 继承普通继承虚继承5.

Python容器类型之列表/字典/元组/集合方式

《Python容器类型之列表/字典/元组/集合方式》:本文主要介绍Python容器类型之列表/字典/元组/集合方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 列表(List) - 有序可变序列1.1 基本特性1.2 核心操作1.3 应用场景2. 字典(D

Java集合中的List超详细讲解

《Java集合中的List超详细讲解》本文详细介绍了Java集合框架中的List接口,包括其在集合中的位置、继承体系、常用操作和代码示例,以及不同实现类(如ArrayList、LinkedList和V... 目录一,List的继承体系二,List的常用操作及代码示例1,创建List实例2,增加元素3,访问元

C#比较两个List集合内容是否相同的几种方法

《C#比较两个List集合内容是否相同的几种方法》本文详细介绍了在C#中比较两个List集合内容是否相同的方法,包括非自定义类和自定义类的元素比较,对于非自定义类,可以使用SequenceEqual、... 目录 一、非自定义类的元素比较1. 使用 SequenceEqual 方法(顺序和内容都相等)2.

如何提高Redis服务器的最大打开文件数限制

《如何提高Redis服务器的最大打开文件数限制》文章讨论了如何提高Redis服务器的最大打开文件数限制,以支持高并发服务,本文给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录如何提高Redis服务器的最大打开文件数限制问题诊断解决步骤1. 修改系统级别的限制2. 为Redis进程特别设置限制

基于Redis有序集合实现滑动窗口限流的步骤

《基于Redis有序集合实现滑动窗口限流的步骤》滑动窗口算法是一种基于时间窗口的限流算法,通过动态地滑动窗口,可以动态调整限流的速率,Redis有序集合可以用来实现滑动窗口限流,本文介绍基于Redis... 滑动窗口算法是一种基于时间窗口的限流算法,它将时间划分为若干个固定大小的窗口,每个窗口内记录了该时间

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个