A城市巡游车与网约车运营特征对比分析【学习】

2023-12-28 14:48

本文主要是介绍A城市巡游车与网约车运营特征对比分析【学习】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 赛题链接

 

赛题背景

出租车作为城市客运交通系统的重要组成部分,以高效、便捷、灵活等优点深受居民青睐。出租车每天的运营中会产生大量的上下车点位相关信息,对这些数据进行科学合理的关联和挖掘,对比在工作日以及休息日、节假日的出租车数据的空间分布及其动态变化,对出租车候车泊位、管理调度和居民通勤特征的研究具有重要意义。

  • 出租车/网约车:上下车地点挖掘;
  • 出租车/网约车:不同日期的空间变化;
  • 出租车/网约车:泊车和调度问题;

赛题思路

赛题数据

赛题任务

通过赛题理解&数据分析,参赛选手需要回答上述问题:

  • 每年工作日取日平均,非工作日取日平均和节假日取日平均,三种情况下出租车&网约车:
    • 运营时间规律:出车时间和运行时间;
    • 空间分布规律:城市分布规律,订单分布规律;
    • 日均空驶率:空驶里程(没有载客)在车辆总运行里程中所占的比例;
    • 订单平均运距:订单平均距离计算;
    • 订单平均运行时长:订单平时时长计算;
    • 上下客点分布密度:上下车位置分布;
  • 对出租车&网约车的调度、融合发展提出建议:
    • 如何进行订单调度?识别打不到车的位置;
    • 如何进行停车场推荐?
    • 订单差异性分析?

 Task1——数据读取

我们对taxiGps20190531.csv数据分析

import pandas as pd
import numpy as np# 文件目录,相对路径
INPUT_PATH = 'C:/Users/HP/Desktop/doc/'# 文件读取行数
MAX_ROWS = 100000 #拼接两个日期的出租车gps数据
taxigps2019 = pd.concat([pd.read_csv(INPUT_PATH + 'taxiGps20190531.csv', nrows=MAX_ROWS,dtype={'GETON_LONGITUDE':np.float32,'GETON_LANTITUDE':np.float32,'GETOFF_LONGITUDE':np.float32,'GETOFF_LANTITUDE':np.float32,'PASS_MILE':np.float16,'NOPASS_MILE':np.float16,'WAITING_TIME':np.float16}),
pd.read_csv(INPUT_PATH+'taxiGps20200620.csv',nrows=MAX_ROWS,dtype={'GETON_LONGITUDE':np.float32,'GETON_LANTITUDE':np.float32,'GETOFF_LONGITUDE':np.float32,'GETOFF_LANTITUDE':np.float32,'PASS_MILE':np.float16,'NOPASS_MILE':np.float16,'WAITING_TIME':np.float16})
])
taxigps2019.describe()#描述性分析
taxigps2019.info()#基本信息
taxigps2019=taxigps2019[taxigps2019.columns[::-1]]#按列倒序排列
taxigps2019.sort_values(by=['CARNO','GPS_TIME'],inplace=True)#CARNO和GPS_TIME排序
taxigps2019.reset_index(inplace=True,drop=True)#将会将原来的索引index作为新的一列,使用drop参数设置去掉原索引taxigps2019=taxigps2019.rename(columns={'CAR_NO':'CARNO'})
taxigps2019=taxigps2019[taxigps2019.columns[::-1]]
taxigps2019['CARNO'].nunique()#有多少辆出租车
np.clip(taxigps2019['GPS_SPEED'].values,0,150).mean()#出租车平均GPS速度
taxigps2019['OPERATING_STATUS'].value_counts()#出租车运营状态统计
taxigps2019[taxigps2019['DRIVING_DIRECTION']==10]['CARNO'].unique()#某个运行方向的车辆统计
taxigps2019['GPS_TIME']=pd.to_datetime(taxigps2019['GPS_TIME'])#统计记录最多的GPS小时
taxigps2019['GPS_TIME'].dt.hour.value_counts()
  1. 统计巡游车GPS数据在20190603中包含多少俩出租车🚖?
  2. 统计网约车GPS数据在20190603中包含多少俩网约车🚗?
  3. 统计巡游车订单数据在20190603中上车经纬度的最大最小值?
  4. 统计网约车订单数据集在20190603中下车经纬度最常见的位置?
    • 假设经度+维度,各保留三维有效数字组合得到具体位置
    • 小提示:可以将经纬度拼接到一起进行统计
taxigps2019=pd.read_csv(INPUT_PATH+'taxiGps20190603.csv',nrows=MAX_ROWS)
taxiorder2019=pd.read_csv(INPUT_PATH+'taxiOrder20190603.csv',nrows=MAX_ROWS)
wycgps2019=pd.read_csv(INPUT_PATH+'wycGPS20190603.csv',nrows=MAX_ROWS)
wycorder2019=pd.read_csv(INPUT_PATH+'wycOrder20190603.csv',nrows=MAX_ROWS)
#print(taxiorder2019.head())
wycgps2019=wycgps2019.rename(columns={'CAR_NO':'CARNO'})
print('taxigps CARNO:', taxigps2019['CARNO'].nunique())
print('wycgps CARNO:',wycgps2019['CARNO'].nunique())
print('_____________________')
print(taxiorder2019['GETON_LONGITUDE'].max())
print(taxiorder2019['GETON_LATITUDE'].max())
print('_____________________')
print(wycorder2019['DEP_LONGITUDE'].max())
print(wycorder2019['DEP_LATITUDE'].max())
print('_____________________')
LONG=round(wycorder2019['DEST_LONGITUDE'],3)
#print(LONG.head())
LATI=round(wycorder2019['DEP_LATITUDE'],3)
pos=(LONG.map(str)+LATI.map(str))
print(pos.value_counts())taxigps CARNO: 6617
wycgps CARNO: 11558
_____________________
123.72247800000001
29.401106
_____________________
118.35051999999999
24.82657
_____________________
118.05724.587    51
118.19724.497    50
118.07524.585    48

 

这篇关于A城市巡游车与网约车运营特征对比分析【学习】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/546317

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

MySQL中的表连接原理分析

《MySQL中的表连接原理分析》:本文主要介绍MySQL中的表连接原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、环境3、表连接原理【1】驱动表和被驱动表【2】内连接【3】外连接【4编程】嵌套循环连接【5】join buffer4、总结1、背景

python中Hash使用场景分析

《python中Hash使用场景分析》Python的hash()函数用于获取对象哈希值,常用于字典和集合,不可变类型可哈希,可变类型不可,常见算法包括除法、乘法、平方取中和随机数哈希,各有优缺点,需根... 目录python中的 Hash除法哈希算法乘法哈希算法平方取中法随机数哈希算法小结在Python中,

Java Stream的distinct去重原理分析

《JavaStream的distinct去重原理分析》Javastream中的distinct方法用于去除流中的重复元素,它返回一个包含过滤后唯一元素的新流,该方法会根据元素的hashcode和eq... 目录一、distinct 的基础用法与核心特性二、distinct 的底层实现原理1. 顺序流中的去重

HTML5 中的<button>标签用法和特征

《HTML5中的<button>标签用法和特征》在HTML5中,button标签用于定义一个可点击的按钮,它是创建交互式网页的重要元素之一,本文将深入解析HTML5中的button标签,详细介绍其属... 目录引言<button> 标签的基本用法<button> 标签的属性typevaluedisabled

关于MyISAM和InnoDB对比分析

《关于MyISAM和InnoDB对比分析》:本文主要介绍关于MyISAM和InnoDB对比分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录开篇:从交通规则看存储引擎选择理解存储引擎的基本概念技术原理对比1. 事务支持:ACID的守护者2. 锁机制:并发控制的艺

CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比

《CSS中的Static、Relative、Absolute、Fixed、Sticky的应用与详细对比》CSS中的position属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布... css 中的 position 属性用于控制元素的定位方式,不同的定位方式会影响元素在页面中的布局和层叠关

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和