代码随想录算法训练营第一天|704. 二分查找、27. 移除元素

本文主要是介绍代码随想录算法训练营第一天|704. 二分查找、27. 移除元素,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

LeetCode.704 二分查找

题目链接:704. 二分查找 - 力扣(LeetCode)

视频链接:二分查找法

相关练习:35. 搜索插入位置 - 力扣(LeetCode)

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

69. x 的平方根 - 力扣(LeetCode)

367. 有效的完全平方数 - 力扣(LeetCode)

思路: 首先看到这个题目,会重点关注的是有序整型数组所有元素是不重复的字眼。那我们就很容易想到寻找一个数的基本二分查找,了解过的都知道逻辑很简单,就是有点细节把控不好.以至于出错。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?上面的问题就是区间定义没有分清楚,写二分法一般就是左闭右闭[left,right]和左闭右开[left,right)两种,接下来和大家一起讨论,用这两种方法如何解题。

整数二分法

指定的数字(binary_search)

第一种:左闭右闭[left,right]

class Solution {
public:int search(vector<int>& nums, int target) {int left=0,right=nums.size()-1;while(left<=right){int mid=left+((right-left)>>1);//避免溢出if(nums[mid]==target) return mid;//找到target,返回midelse if(nums[mid]>target) right=mid-1;//往左区间[left,mid-1]查找else   left=mid+1; //往右区间[mid+1,right]查找}return -1;//查找失败返回-1}
};

时间复杂度:O(logn)

空间复杂度:O(1)

为了更好理解上面的代码,举个例子简单理解一下:

现在我们需要从序列A={1,5,6,8,9,11,15,16,20}中查找数字11的位置,其中序列是0下标是0到8(下标1到9也是没问题的大家下去可以模拟一下)

1.[left,right]=[0,8],因此下标中点是mid=(left+right)/2=4;A[mid]=A[4]=9;9<11;说明需要在    [mid+1,right]范围内继续找,因此left=mid+1=5;

2.[left,right]=[5,8],因此下标中点是mid=(left+right)/2=6;A[mid]=A[6]=15;15>11;说明需要在[left,mid-1]范围内继续查找,因此right=mid-1=5;

3.[left,right]=[5,5],因此下标中点mid=(left+right)/2=5;A[mid]=A[5]=11;11=11;说明找到了需要查找的数X,返回下标5

1.为什么while循环的条件中是<=,而不是<?

 答:因为初始化right的赋值是nums.length-1,即最后一个元素的索引,而不是nums.length.这两者可能出现在不同功能的二分查找中,区别是;前者是相当于两端都闭区间[left,right],后者相当于左闭右开区间[left,right)。因为索引大小nums.length是越界的,所以我们把right这一边视为开区间。我们这个算法使用的是前者[left,right]两端都闭区间。这个区间其实就是每次进行搜索的区间。while(left<=right)的终止条件是left=right+1;while(left<right)的终止条件是left=right;

2.为什么left=mid+1,right=mid-1?为什么有的代码写的是right=mid或left=mid?

答:刚才明确了「搜索区间」这个概念,而且本算法的搜索区间是两端都闭的,即 [left, right]。那么当我们发现索引 mid 不是要找的 target 时,当然是去搜索区间 [left, mid-1] 或者区间 [mid+1, right] 对不对?因为 mid 已经搜索过,应该从搜索区间中去除。

第二种:左闭右开[left,right)

class Solution {
public:int search(vector<int>& nums, int target) {int left=0,right=nums.size();while(left<right)//因为left == right的时候,在[left, right)是无效的空间,所以使用 <{ int mid=left+((right-left)>>1);if(nums[mid]>target){right=mid;//target 在左区间,在[left, middle)中}else if(nums[mid]<target){left=mid+1;// target 在右区间,在[middle + 1, right)中}else{return mid;   // 数组中找到目标值,直接返回下标}}return -1;}
};

时间复杂度:O(logn);

空间复杂度:O(1)

当然,二分查找也可以使用递归形式:

//二分区间为左闭右闭的[left,right],传入的初值为[0,n-1]
int binarySearch(int* a, int left, int right, int key)
{while (left < right){int mid = left + ((right - left) >> 1);int number = a[mid];if (number < key){return binarySearch(a, mid + 1, right, key);}else if (number > key){return binarySearch(a, left, mid - 1, key);}elsereturn mid;}
}

第一个大于等于X的位置(lower_bound/upper_bound)

例如对下标0开始,有5个元素的序列为{1,3,3,3,6}来说,如果要查询3,则应当得到L=1,R=4;如果要查询5,则应当得到L=R=4;如果要查询6.应该得到L=4,R=5;而查询如果是8,则应该得到L=R=5.显然如果序列中没有X,那么L和R也可以理解为假设序列中存在X,则X应当在的位置.

做法其实和前面的很类似,下面我们来分析一下,假设当前的二分区间为左闭右闭区间[left,right],那么可以根据mid位置处的元素与欲查询元素x的大小来判断应当往哪个区间查找:

1.如果A[mid]>=x,说明第一个大于等于x的位置一定在mid处或者在mid的左侧,应该往左子区间[left,mid]继续查找,即令right=mid;

 2.如果A[mid]<x,说明第一个大于等于x的元素的位置一定在mid的右侧,应往右区间[mid+1,right]继续查找,即令left=mid+1; 

代码:

//A[]为递增,x为查询数字;
//二分上下界为左闭右闭的[left,right],传入的初值为[0,n]
int low_bound(int A[],int left,int right,int x)
{int mid;while(left<right){mid=(left+right)/2;if(A[mid]>=x)  right=mid;//中间的数大于等于x,往左边区间找[left,mid]else           left=mid+1;//中间的数小于x,往右边区间找[mid+1,right]}return left;
}

注意:1.循环条件为什么是left<right不是left<=right?这是由问题本身决定的.在上面题目中,需要当元素不存在返回-1,这样当left>right是[left,right]就不再是闭区间,可以作为元素不存在的判定原则,因此left<=right满足时循环应当一直执行。但是如果要是区间返回第一个大于等于x的元素,就不需要判断元素本身是不是存在,因为他就算不存在返回的也是"假设他存在,他应该的位置",于是当left==right时, 刚好能夹出唯一的位置,就是需要的结果.

2.由于left==right时while停止,因此最后返回left,right都可以.

3.二分的初始区间应该能覆盖到所有可能返回的结果.下界为0肯定的,那上界为什么是n,不是n-1,考虑到欲查询元素有可能比序列中任何数字都要大,此时应该返回n(即假设它存在,它应该在的位置).故初始化区间为[0,n];当然也有的题目要求不在则返回-1,这时候就不需要取到n,具体问题具体分析.

拓展: 其实这就是C++中lower_bound()函数的用法,返回第一个大于等于x数的位置,不存在则返回最后一个数的下一个位置;对应的也有个upper_bound()函数的用法,它是返回第一个大于x数的位置;这个大家可以去实现下,其实就是A[mid]>=x换成A[mid]>x就可以了.这两个函数大家可以去了解下,具体实现上面其实已经介绍了.

不大于X的最后一个位置 

34. 在排序数组中查找元素的第一个和最后一个位置 - 力扣(LeetCode)

简述下题意就是:就是查询一个数的起始位置和终止位置,不存在这个数就返回-1,所以这里取值范围不需要向上面一样取到n(这里不需要输出最后一个数的下一个位置);

需要写两个二分,一个需要找到>=x的第一个数,另一个需要找到<=x的最后一个数。查找不小于x的第一个位置,较为简单(上面已经讲过了):直接放代码

int l = 0, r = n - 1;
while (l < r) {int mid = l + r >> 1;if (a[mid] < x)  l = mid + 1;else    r = mid;
}

查找不大于x的最后一个位置,便不容易了:

int l1 = l, r1 = n;
while (l1 + 1 < r1) {int mid = l1 + r1 >> 1;if (a[mid] <= x)  l1 = mid;else    r1 = mid;
}

为什么不令r = mid - 1呢?因为如果按照上一个二分的写法,循环判断条件还是l < r,当只有两个元素比如2 2时,l指向第一个元素,r指向第二个元素,mid指向第一个元素,a[mid] <= x,l = mid还是指向第一个元素,指针不移动了,陷入死循环了,此刻l + 1 == r,未能退出循环。
那么直接把循环判断条件改成l + 1 < r呢?此时一旦只有两个元素,l和r差1,循环便不再执行,查找错误。
所以这里出现了二分的典型错误,l == r作为循环终止条件,会出现死循环,l + 1 == r作为循环终止条件,会出现查找错误 

问题如何解决,一种方法就是将查找的区间设置为左闭右开,比如待查找元素在[0,n - 1]范围内,可以写成[0,n),令r = n,这时候只有两个元素时,r是取最右边元素的后一个位置的,l和r相差2,还会执行循环。
现在再来理解上一段的r1 = mid,说明a[mid] > x时,r = mid就表示待查找元素会是在r的左边,因为r是开区间。上面这种写法修改了循环条件使得二分不会死循环,修改了区间的开闭性使得不会查找错误。另一种解决办法就是:

int l = 0, r = n - 1;
while (l < r){int mid = l + r + 1 >> 1;if (a[mid] <= x) l = mid;else r = mid - 1;}

 整数二分模板

bool check(int x) {/* ... */} // 检查x是否满足某种性质// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{while (l < r){int mid = l + r >> 1;if (check(mid)) r = mid;    // check()判断mid是否满足性质else l = mid + 1;}return l;
}
// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{while (l < r){int mid = l + r + 1 >> 1;if (check(mid)) l = mid;else r = mid - 1;}return l;
}

浮点数二分法

首先介绍如何计算根号2的近似值。

对于f(x)=x^2来说,在x属于[1,2]范围内,f(x)是随着x的增大而增大的,这就给使用二分法创造了条件,即可以用如下策略来逼近根号二的值。(这里不妨以精确到10^-5为例)

令浮点数left和right的初值分别是1和2,然后根据left和right的中点mid处f(x)的值与2的大小来选择子区间进行逼近.

如果f(mid)>2,说明mid>根号2,应当在[left,mid]的范围内继续逼近,故令right=mid;

 

 如果f(mid)<2,说明mid<根号2,应该在[mid,right]的范围内继续逼近,故令left=mid. 

代码:

const double eps=1e-5;
double f(double x)
{return x*x;
}
double calsqrt()
{  double left=1,right=2,mid;while(right-left>eps){ mid=(left+right)/2;if(f(mid)>2)  right=mid;else         left=mid;}return mid;}

浮点数二分法模板 

bool check(double x) {/* ... */} // 检查x是否满足某种性质double bsearch_3(double l, double r)
{const double eps = 1e-6;   // eps 表示精度,取决于题目对精度的要求while (r - l > eps){double mid = (l + r) / 2;if (check(mid)) r = mid;else l = mid;}return l;
}

 LeetCode.27 移除元素

题目链接:27. 移除元素 - 力扣(LeetCode)

视频链接:数组中移除元素并不容易! | LeetCode:27. 移除元素_哔哩哔哩_bilibili

相关练习:26. 删除有序数组中的重复项 - 力扣(LeetCode)

283. 移动零 - 力扣(LeetCode)

844. 比较含退格的字符串 - 力扣(LeetCode)

977. 有序数组的平方 - 力扣(LeetCode)

思路: 题目要求我们把nums中所有值为val的元素原地删除,需要使用快慢指针技巧:如果fast遇到值为val的元素,则直接跳过,否则就赋值给slow指针,并让slow前进一步。

class Solution {
public:int removeElement(vector<int>& nums, int val) {int fast = 0, slow = 0;while (fast < nums.size()) {if (nums[fast] != val) {nums[slow] = nums[fast];slow++;}fast++;}return slow;}
};

总结

由于好久没有碰编程,这两题加上总结大概花费了3h左右,好在于学到了东西,让我对二分查找有了更好的认识,对开区间和闭区间,对是否需要加上等于号有了更清晰地定义和区分,第二题刚开始并没有想到快慢指针,而是用双层for循环,这样做在力扣上也是可以做的,为了提高算法效率,学习到了快慢指针并连同看了左右指针,有些细节已经忘了,重温了一遍,效果自我感觉不错,明天继续加油!!!

这篇关于代码随想录算法训练营第一天|704. 二分查找、27. 移除元素的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544906

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.