DataWhale-(数据可视化Matplotlib)-Task01(Matplotlib初相识)-202201

2023-12-27 21:48

本文主要是介绍DataWhale-(数据可视化Matplotlib)-Task01(Matplotlib初相识)-202201,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Matplotlib中文教程
datawhalechina的Fantastic-Matplotlib

一、认识matplotlib

Matplotlib是一个Python 2D绘图库,能够以多种硬拷贝格式和跨平台的交互式环境生成出版物质量的图形,用来绘制各种静态,动态,交互式的图表。

Matplotlib可用于Python脚本,Python和IPython Shell、Jupyter notebook,Web应用程序服务器和各种图形用户界面工具包等。

Matplotlib是Python数据可视化库中的泰斗,它已经成为python中公认的数据可视化工具,我们所熟知的pandas和seaborn的绘图接口其实也是基于matplotlib所作的高级封装。

为了对matplotlib有更好的理解,让我们从一些最基本的概念开始认识它,再逐渐过渡到一些高级技巧中。

二、一个最简单的绘图例子

Matplotlib的图像是画在figure(如windows,jupyter窗体)上的,每一个figure又包含了一个或多个axes(一个可以指定坐标系的子区域)。最简单的创建figure以及axes的方式是通过pyplot.subplots命令,创建axes以后,可以使用Axes.plot绘制最简易的折线图。

import matplotlib.pyplot as plt
import matplotlib as mpl
import numpy as npfig, ax = plt.subplots()  # 创建一个包含一个axes的figure
ax.plot([1, 2, 3, 4], [2, 6, 3, 5])  # 绘制图像

在这里插入图片描述
Trick: 在jupyter notebook中使用matplotlib时会发现,代码运行后自动打印出类似<matplotlib.lines.Line2D at 0x23155916dc0>这样一段话,这是因为matplotlib的绘图代码默认打印出最后一个对象。如果不想显示这句话,有以下三种方法,在本章节的代码示例中你能找到这三种方法的使用。

1.在代码块最后加一个分号;

2.在代码块最后加一句plt.show()

3.在绘图时将绘图对象显式赋值给一个变量,如将plt.plot([1, 2, 3, 4]) 改成line =plt.plot([1, 2, 3, 4])

和MATLAB命令类似,你还可以通过一种更简单的方式绘制图像,matplotlib.pyplot方法能够直接在当前axes上绘制图像,如果用户未指定axes,matplotlib会帮你自动创建一个。所以上面的例子也可以简化为以下这一行代码。

line=plt.plot([1, 2, 3, 4], [1, 4, 2, 3])  

在这里插入图片描述

三、Figure的组成

现在我们来深入看一下figure的组成。通过一张figure解剖图,我们可以看到一个完整的matplotlib图像通常会包括以下四个层级,这些层级也被称为容器(container),下一节会详细介绍。在matplotlib的世界中,我们将通过各种命令方法来操纵图像中的每一个部分,从而达到数据可视化的最终效果,一副完整的图像实际上是各类子元素的集合。

  • Figure:顶层级,用来容纳所有绘图元素

  • Axes:matplotlib宇宙的核心,容纳了大量元素用来构造一幅幅子图,一个figure可以由一个或多个子图组成

  • Axis:axes的下属层级,用于处理所有和坐标轴,网格有关的元素

  • Tick:axis的下属层级,用来处理所有和刻度有关的元素

四、两种绘图接口

matplotlib提供了两种最常用的绘图接口,在最后的思考题中请思考两种模式的主要区别

  1. 显式创建figure和axes,在上面调用绘图方法,也被称为OO模式(object-oriented style)

  2. 依赖pyplot自动创建figure和axes,并绘图

使用第一种绘图接口,是这样的:

x = np.linspace(0, 2, 100)fig, ax = plt.subplots()  
ax.plot(x, x, label='linear')  
ax.plot(x, x**2, label='quadratic')  
ax.plot(x, x**3, label='cubic')  
ax.set_xlabel('x label') 
ax.set_ylabel('y label') 
ax.set_title("Simple Plot")  
ax.legend() 

在这里插入图片描述
而如果采用第二种绘图接口,绘制同样的图,代码是这样的:

x = np.linspace(0, 2, 100)plt.plot(x, x, label='linear') 
plt.plot(x, x**2, label='quadratic')  
plt.plot(x, x**3, label='cubic')
plt.xlabel('x label')
plt.ylabel('y label')
plt.title("Simple Plot")
plt.legend()

在这里插入图片描述

五、 通用绘图模板

由于matplotlib的知识点非常繁杂,在实际使用过程中也不可能将全部API都记住,很多时候都是边用边查。因此这里提供一个通用的绘图基础模板,任何复杂的图表几乎都可以基于这个模板骨架填充内容而成。初学者刚开始学习时只需要牢记这一模板就足以应对大部分简单图表的绘制,在学习过程中可以将这个模板模块化,了解每个模块在做什么,在绘制复杂图表时如何修改,填充对应的模块。

# step1 准备数据
x = np.linspace(0, 2, 100)
y = x**2# step2 设置绘图样式,这一模块的扩展参考第五章进一步学习,这一步不是必须的,样式也可以在绘制图像时进行设置
mpl.rc('lines', linewidth=4, linestyle='-.')# step3 定义布局, 这一模块的扩展参考第三章进一步学习
fig, ax = plt.subplots()  # step4 绘制图像, 这一模块的扩展参考第二章进一步学习
ax.plot(x, y, label='linear')  # step5 添加标签,文字和图例,这一模块的扩展参考第四章进一步学习
ax.set_xlabel('x label') 
ax.set_ylabel('y label') 
ax.set_title("Simple Plot")  
ax.legend() ;

在这里插入图片描述

思考题

  • 请思考两种绘图模式的优缺点和各自适合的使用场景
  • 在第五节绘图模板中我们是以OO模式作为例子展示的,请思考并写一个pyplot绘图模式的简单模板
# step1 准备数据
x = np.linspace(0, 2, 100)
y = x**2# step2 设置绘图样式
mpl.rc('lines', linewidth=4, linestyle='-.')# step3 绘制图像
plt.plot(x, y, label='linear')  # step5 添加标签,文字和图例,这一模块的扩展参考第四章进一步学习
plt.xlabel('x label') 
plt.ylabel('y label') 
plt.title("Simple Plot")  
plt.legend() 
plt.show()

这篇关于DataWhale-(数据可视化Matplotlib)-Task01(Matplotlib初相识)-202201的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/544380

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者