模型量化之AWQ和GPTQ

2023-12-27 09:36
文章标签 模型 量化 gptq awq

本文主要是介绍模型量化之AWQ和GPTQ,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是模型量化

模型量化(Model Quantization)是一种通过减少模型参数表示的位数来降低模型计算和存储开销的技术。一般来说,模型参数在深度学习模型中以浮点数(例如32位浮点数)的形式存储,而模型量化可以将这些参数转换为较低位宽的整数或定点数。这有几个主要的作用:

减小模型大小: 通过减少每个参数的位数,模型占用的存储空间变得更小。这对于在移动设备、嵌入式系统或者边缘设备上部署模型时尤其有用,因为这些设备的存储资源通常有限。

加速推理: 量化可以降低模型推理时的计算开销。使用较低位宽的整数或定点数进行计算通常比使用浮点数更高效,因为它可以减少内存带宽需求,提高硬件的并行计算能力。这对于实时推理和响应时间敏感的应用程序非常重要。

减少功耗: 量化可以降低模型在部署环境中的能耗,因为计算和存储操作通常是耗电的。通过减少模型参数的位数,可以减少在部署设备上执行推理时的功耗。

提高模型在资源受限环境中的可用性: 在一些场景中,设备的存储和计算资源可能非常有限,例如在边缘设备或物联网设备上。模型量化使得在这些资源受限的环境中部署深度学习模型更加可行。

总体而言,模型量化是一种权衡计算、存储和功耗的技术,可以使得深度学习模型更适应于各种不同的部署场景。

常用的模型量化技术

Round nearest quantization:(最近整数量化)

是一种常见的模型量化技术,它用于将浮点数参数量化为整数或定点数。在这种量化中,每个浮点数参数被四舍五入到最接近的整数或定点数。这种方法旨在保留尽可能多的信息,同时将参数映射到有限的整数或定点值上。

AWQ(Activation-aware Weight Quantization)-激活感知权重量化:

激活感知权重量化(AWQ),一种面向LLM低比特权重量化的硬件友好方法。我们的方法基于这样一个观察:权重并非同等重要,仅保护1%的显著权重可以大大减少量化误差。然后,我们建议通过观察激活而不是权重来搜索保护显著权重的最佳通道缩放。AWQ不依赖于任何反向传播或重构,因此可以很好地保留LLMs在不同领域和模态中的泛化能力,而不会过度拟合校准集。AWQ在各种语言建模和特定领域基准上优于现有工作。由于更好的泛化能力,它在面向指令调整的LMs上实现了出色的量化性能,并且首次在多模态LMs上取得了成功,论文地址。

GPTQ:Generative Pretrained Transformer Quantization

GPTQ 的思想最初来源于 Yann LeCun 在 1990 年提出的 OBD 算法,随后 OBS、OBC(OBQ) 等方法不断进行改进,而 GPTQ 是 OBQ 方法的加速版。简单来说,GPTQ 对某个 block 内的所有参数逐个量化,每个参数量化后,需要适当调整这个 block 内其他未量化的参数,以弥补量化造成的精度损失。GPTQ 量化需要准备校准数据集,论文地址。

Transformers量化技术BitsAndBytes

BitsAndBytes 通过将模型参数量化为较低比特位宽的整数表示,从而在不显著影响任务性能的前提下减小了模型的存储需求和计算复杂度。然而,需要仔细选择位宽度,以平衡性能和信息损失之间的权衡。

大模型占用显存粗略计算公式

上面的推导公式中1GB=1024MB=2的10次方MB,1MB=1024KB,1KB=1024B,所以1GB=2的30次方B,1GB=1024*1024*1024B=1073741824B,约等于10亿B,所以约等于10的9次方B。通过上面的计算公式,可以粗略计算出对于6B的大模型,需要12G的显存,当然这只是对模型参数需要占用的显存的粗略计算,实际加载一个大模型,还需要更多的显存。这也是为什么有这些量化技术来缩小模型的大小。

采用AWQ量化模型代码例子

下面的代码例子来源于AWQ官网,在实际运行过程,如果选择加载vicuna-7b-v1.5-awq,一直在报“Token indices sequence length is longer than the specified maximum sequence length for this model (8322 > 4096). Running this sequence through the model will result in indexing errors”,换成了量化“facebook/opt-125m-awq”,量化成功,但是用量化后的模型尝试运行benchmark的脚本,也报错了。错误提示是“/home/ubuntu/python/opt-125-awq is not a folder containing a `.index.json` file or a pytorch_model.bin file”。但是这些错误不影响我们对AWQ量化模型的理解

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizermodel_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4, "version": "GEMM" }# Load model
# NOTE: pass safetensors=True to load safetensors
model = AutoAWQForCausalLM.from_pretrained(model_path, **{"low_cpu_mem_usage": True, "use_cache": False}
)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)# Quantize
model.quantize(tokenizer, quant_config=quant_config)# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)print(f'Model is quantized and saved at "{quant_path}"')

将model_path=‘facebook/opt-125m’可以量化成功。接下来再看看官网的benchmark脚本具体如何对量化后的模型做评估。官网完整的benchmark脚本。整个代码的目的是通过测试不同条件下的生成性能,包括速度和内存使用,以便评估模型的效果。

TimeMeasuringLogitsProcessor 类:在模型前向传播之后调用,用于测量模型生成的时间。通过记录每个时间点,计算了预填充和生成阶段的时间差,以及每个生成步骤的时间差。主要用于测量模型的速度,包括预填充和生成阶段的速度。
warmup 函数:通过进行矩阵乘法来对模型进行预热,以确保模型的权重已经加载到 GPU 中。
generate_torch 和 generate_hf 函数:generate_torch 函数使用 PyTorch 的 model 对象生成 tokens。generate_hf 函数使用 Huggingface Transformers 库的 model.generate 方法生成 tokens。这两个函数都会测量生成的时间,并返回上下文时间和每个生成步骤的时间。
run_round 函数:通过加载模型、进行预热、生成 tokens 等步骤来运行测试的一个循环。
测试了模型在不同上下文长度和生成步骤数下的性能。输出测试结果,包括上下文时间、生成时间、内存使用等。
main 函数:设置不同的上下文长度和生成步骤数的测试轮次。使用给定的生成器(PyTorch 或 Huggingface)运行测试。
运行脚本的时候,参数包括:model_path:模型路径。
quant_file:量化权重的文件名。
batch_size:生成时的批量大小。
no_safetensors:是否禁用安全张量。
generator:生成器类型,可以是 "torch" 或 "hf"。
pretrained:是否使用预训练模型。

采用GPTQ量化模型代码例子

下面的例子来源于gptq官网例子,这个例子中量化的也是opt-125m模型,gptq进行模型量化时,需要传递数据集,这里传递的数据集很简单,就是一句话。

模型量化成功后,用量化后的模型生成内容,可以看到,如果是数据集中的信息,模型能正确生成内容,如果是其他问题,例如“woman works as”,模型就无法输出内容了。所以,如果采用gptq进行模型量化,输入的数据集是非常关键的。

当然也支持一些默认数据集,例如:(包括['wikitext2','c4','c4-new','ptb','ptb-new'])。这些数据集都可以在huggingface上找到。如果采用默认数据集,在初始化GPTQConfig的时候设置dataset参数即可,代码如下所示:

quantization_config = GPTQConfig(bits=4, # 量化精度group_size=128,dataset="c4",desc_act=False,
)

实际在gptq的github上提供了很多example的代码,包括量化后评估模型性能的脚本,更多信息可查看这里。

BitsAndBytes代码例子

BitsAndBytes的量化代码例子非常简单,在from_pretrained()方法中初始化三个参数即可。调用量化后的模型,让其生成内容“Merry Chrismas! I am glad to”,量化后的模型生成的内容也比较ok。具体如下图所示:

from transformers import AutoModelForCausalLMmodel_id = "facebook/opt-2.7b"model_4bit = AutoModelForCausalLM.from_pretrained(model_id,device_map="auto",load_in_4bit=True)# 获取当前模型占用的 GPU显存(差值为预留给 PyTorch 的显存)
memory_footprint_bytes = model_4bit.get_memory_footprint()
memory_footprint_mib = memory_footprint_bytes / (1024 ** 2)  # 转换为 MiBprint(f"{memory_footprint_mib:.2f}MiB")from transformers import AutoTokenizertokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Merry Christmas! I'm glad to"
inputs = tokenizer(text, return_tensors="pt").to(0)out = model_4bit.generate(**inputs, max_new_tokens=64)
print(tokenizer.decode(out[0], skip_special_tokens=True))

以上就是对于一些常用的模型量化技术的介绍。

这篇关于模型量化之AWQ和GPTQ的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/542690

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

AI Toolkit + H100 GPU,一小时内微调最新热门文生图模型 FLUX

上个月,FLUX 席卷了互联网,这并非没有原因。他们声称优于 DALLE 3、Ideogram 和 Stable Diffusion 3 等模型,而这一点已被证明是有依据的。随着越来越多的流行图像生成工具(如 Stable Diffusion Web UI Forge 和 ComyUI)开始支持这些模型,FLUX 在 Stable Diffusion 领域的扩展将会持续下去。 自 FLU

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号