python降低图像的空间分辨率——冈萨雷斯数字图像处理

本文主要是介绍python降低图像的空间分辨率——冈萨雷斯数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理:

降低图像的空间分辨率意味着减少图像中可见的细节,使图像变得模糊或粗糙。这可以通过减少图像的像素数量或改变像素的排列来实现。以下是一些降低图像空间分辨率的常见原理和方法:
下采样(Subsampling):下采样是最简单的降低空间分辨率的方法之一。它涉及到降低图像的分辨率,通常通过在水平和垂直方向上删除一些像素来实现。例如,将每2x2像素块合并为一个像素,可以将图像的分辨率减小到原来的四分之一。
平均滤波(Average Filtering):平均滤波是一种模糊图像的方法,它使用一个滤波器来对像素进行平均,以减少图像中的高频细节。这样做可以降低图像的锐利度,使其看起来更模糊。
高斯模糊(Gaussian Blur):高斯模糊是一种通过应用高斯滤波器来降低图像细节的方法。高斯滤波器会使图像中的高频信息受到抑制,从而导致图像变得模糊。
双三次插值(Bicubic Interpolation):双三次插值是一种在降低图像分辨率时用于平滑图像的方法。它通过在像素之间进行插值来创建平滑的图像,减少锐利边缘的出现。
图像子采样(Image Subsampling):这种方法涉及将图像划分为较小的块,然后仅保留块中的一个像素或像素的平均值。这样可以显著降低图像的分辨率。
像素化(Pixelation):像素化是一种将图像变得更粗糙的方法,通常用于隐藏敏感信息。它涉及将图像分割成大块,并用每个块内的一个像素颜色来填充整个块。

这些方法可以根据需要选择,具体取决于希望达到的效果和图像降低分辨率的程度。降低图像的空间分辨率通常用于减小图像文件的大小、提高图像处理速度或隐藏细节,但需要注意,在某些情况下可能会导致信息丢失和图像质量下降。

我们这里采取下采样

输出的结果如下:

在这里插入图片描述

提示:

原图大小为3692×2812,用opencv读入后,以2的幂次(20-27)为采样间隔对原图降采样8次。采样可以用数组的切片索引实现,例如img[0:rows:2,:,:]表示以2为间隔,依次取图像的第0行,第2行,第4行…,img[0:rows:4,:,:]表示以4为间隔对图像的行采样,对列的操作类似。8次采样完成后,用pyplot同时显示所有结果图。

import cv2
import math
import matplotlib.pyplot as pltimg=cv2.imread("Fig0220.tif")
rows,cols,channels=img.shapeimg_list=[]
img_name_list=[] for i in range(8):index=int(math.pow(2,i))img_list.append(img[0:rows:index, 0:cols:index,:])rows_new=int(rows/index)cols_new=int(cols/index)img_name_list.append(str(rows_new)+'*'+str(cols_new))_,axs=plt.subplots(2,4)for i in range(2):for j in range(4):axs[i,j].imshow(img_list[i*4+j])axs[i,j].set_title(img_name_list[i*4+j])axs[i,j].axes.get_xaxis().set_visible(False)axs[i,j].axes.get_xaxis().set_visible(False)plt.savefig("sampling.jpg")
plt.show()

结果展示

在这里插入图片描述

降低图像空间分辨率的方法很多,本质上都是消除图像的一些细节信息.最简单的降低空间分辨率的方法就是在邻域内的平均(比如22大小邻域的光滑滤波,或者把图像分成22的小方块,每个方块求平均值);降低空间分辨率并不一定导致图像变小.
但是从信息量的角度讲,NM大小的图像包含了NM个值来表示信息,降低图像的空间分辨率以后,图像的信息量也降低了,这个时候必然不需要NM个值来表示图像的信息,所以当我们要求节约空间的时候,是可以把图像变小的.
由于图像内容的相关性,一般的N
M大小的图像都不需要NM个值来表示,所以我们有很多图像压缩算法在保真的情况下,可以极大的压缩图像数据量。

这篇关于python降低图像的空间分辨率——冈萨雷斯数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539965

相关文章

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

分辨率三兄弟LPI、DPI 和 PPI有什么区别? 搞清分辨率的那些事儿

《分辨率三兄弟LPI、DPI和PPI有什么区别?搞清分辨率的那些事儿》分辨率这个东西,真的是让人又爱又恨,为了搞清楚它,我可是翻阅了不少资料,最后发现“小7的背包”的解释最让我茅塞顿开,于是,我... 在谈到分辨率时,我们经常会遇到三个相似的缩写:PPI、DPI 和 LPI。虽然它们看起来差不多,但实际应用

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.

Python+PyQt5实现多屏幕协同播放功能

《Python+PyQt5实现多屏幕协同播放功能》在现代会议展示、数字广告、展览展示等场景中,多屏幕协同播放已成为刚需,下面我们就来看看如何利用Python和PyQt5开发一套功能强大的跨屏播控系统吧... 目录一、项目概述:突破传统播放限制二、核心技术解析2.1 多屏管理机制2.2 播放引擎设计2.3 专

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2