python降低图像的空间分辨率——冈萨雷斯数字图像处理

本文主要是介绍python降低图像的空间分辨率——冈萨雷斯数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理:

降低图像的空间分辨率意味着减少图像中可见的细节,使图像变得模糊或粗糙。这可以通过减少图像的像素数量或改变像素的排列来实现。以下是一些降低图像空间分辨率的常见原理和方法:
下采样(Subsampling):下采样是最简单的降低空间分辨率的方法之一。它涉及到降低图像的分辨率,通常通过在水平和垂直方向上删除一些像素来实现。例如,将每2x2像素块合并为一个像素,可以将图像的分辨率减小到原来的四分之一。
平均滤波(Average Filtering):平均滤波是一种模糊图像的方法,它使用一个滤波器来对像素进行平均,以减少图像中的高频细节。这样做可以降低图像的锐利度,使其看起来更模糊。
高斯模糊(Gaussian Blur):高斯模糊是一种通过应用高斯滤波器来降低图像细节的方法。高斯滤波器会使图像中的高频信息受到抑制,从而导致图像变得模糊。
双三次插值(Bicubic Interpolation):双三次插值是一种在降低图像分辨率时用于平滑图像的方法。它通过在像素之间进行插值来创建平滑的图像,减少锐利边缘的出现。
图像子采样(Image Subsampling):这种方法涉及将图像划分为较小的块,然后仅保留块中的一个像素或像素的平均值。这样可以显著降低图像的分辨率。
像素化(Pixelation):像素化是一种将图像变得更粗糙的方法,通常用于隐藏敏感信息。它涉及将图像分割成大块,并用每个块内的一个像素颜色来填充整个块。

这些方法可以根据需要选择,具体取决于希望达到的效果和图像降低分辨率的程度。降低图像的空间分辨率通常用于减小图像文件的大小、提高图像处理速度或隐藏细节,但需要注意,在某些情况下可能会导致信息丢失和图像质量下降。

我们这里采取下采样

输出的结果如下:

在这里插入图片描述

提示:

原图大小为3692×2812,用opencv读入后,以2的幂次(20-27)为采样间隔对原图降采样8次。采样可以用数组的切片索引实现,例如img[0:rows:2,:,:]表示以2为间隔,依次取图像的第0行,第2行,第4行…,img[0:rows:4,:,:]表示以4为间隔对图像的行采样,对列的操作类似。8次采样完成后,用pyplot同时显示所有结果图。

import cv2
import math
import matplotlib.pyplot as pltimg=cv2.imread("Fig0220.tif")
rows,cols,channels=img.shapeimg_list=[]
img_name_list=[] for i in range(8):index=int(math.pow(2,i))img_list.append(img[0:rows:index, 0:cols:index,:])rows_new=int(rows/index)cols_new=int(cols/index)img_name_list.append(str(rows_new)+'*'+str(cols_new))_,axs=plt.subplots(2,4)for i in range(2):for j in range(4):axs[i,j].imshow(img_list[i*4+j])axs[i,j].set_title(img_name_list[i*4+j])axs[i,j].axes.get_xaxis().set_visible(False)axs[i,j].axes.get_xaxis().set_visible(False)plt.savefig("sampling.jpg")
plt.show()

结果展示

在这里插入图片描述

降低图像空间分辨率的方法很多,本质上都是消除图像的一些细节信息.最简单的降低空间分辨率的方法就是在邻域内的平均(比如22大小邻域的光滑滤波,或者把图像分成22的小方块,每个方块求平均值);降低空间分辨率并不一定导致图像变小.
但是从信息量的角度讲,NM大小的图像包含了NM个值来表示信息,降低图像的空间分辨率以后,图像的信息量也降低了,这个时候必然不需要NM个值来表示图像的信息,所以当我们要求节约空间的时候,是可以把图像变小的.
由于图像内容的相关性,一般的N
M大小的图像都不需要NM个值来表示,所以我们有很多图像压缩算法在保真的情况下,可以极大的压缩图像数据量。

这篇关于python降低图像的空间分辨率——冈萨雷斯数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539965

相关文章

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目