python降低图像的空间分辨率——冈萨雷斯数字图像处理

本文主要是介绍python降低图像的空间分辨率——冈萨雷斯数字图像处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

原理:

降低图像的空间分辨率意味着减少图像中可见的细节,使图像变得模糊或粗糙。这可以通过减少图像的像素数量或改变像素的排列来实现。以下是一些降低图像空间分辨率的常见原理和方法:
下采样(Subsampling):下采样是最简单的降低空间分辨率的方法之一。它涉及到降低图像的分辨率,通常通过在水平和垂直方向上删除一些像素来实现。例如,将每2x2像素块合并为一个像素,可以将图像的分辨率减小到原来的四分之一。
平均滤波(Average Filtering):平均滤波是一种模糊图像的方法,它使用一个滤波器来对像素进行平均,以减少图像中的高频细节。这样做可以降低图像的锐利度,使其看起来更模糊。
高斯模糊(Gaussian Blur):高斯模糊是一种通过应用高斯滤波器来降低图像细节的方法。高斯滤波器会使图像中的高频信息受到抑制,从而导致图像变得模糊。
双三次插值(Bicubic Interpolation):双三次插值是一种在降低图像分辨率时用于平滑图像的方法。它通过在像素之间进行插值来创建平滑的图像,减少锐利边缘的出现。
图像子采样(Image Subsampling):这种方法涉及将图像划分为较小的块,然后仅保留块中的一个像素或像素的平均值。这样可以显著降低图像的分辨率。
像素化(Pixelation):像素化是一种将图像变得更粗糙的方法,通常用于隐藏敏感信息。它涉及将图像分割成大块,并用每个块内的一个像素颜色来填充整个块。

这些方法可以根据需要选择,具体取决于希望达到的效果和图像降低分辨率的程度。降低图像的空间分辨率通常用于减小图像文件的大小、提高图像处理速度或隐藏细节,但需要注意,在某些情况下可能会导致信息丢失和图像质量下降。

我们这里采取下采样

输出的结果如下:

在这里插入图片描述

提示:

原图大小为3692×2812,用opencv读入后,以2的幂次(20-27)为采样间隔对原图降采样8次。采样可以用数组的切片索引实现,例如img[0:rows:2,:,:]表示以2为间隔,依次取图像的第0行,第2行,第4行…,img[0:rows:4,:,:]表示以4为间隔对图像的行采样,对列的操作类似。8次采样完成后,用pyplot同时显示所有结果图。

import cv2
import math
import matplotlib.pyplot as pltimg=cv2.imread("Fig0220.tif")
rows,cols,channels=img.shapeimg_list=[]
img_name_list=[] for i in range(8):index=int(math.pow(2,i))img_list.append(img[0:rows:index, 0:cols:index,:])rows_new=int(rows/index)cols_new=int(cols/index)img_name_list.append(str(rows_new)+'*'+str(cols_new))_,axs=plt.subplots(2,4)for i in range(2):for j in range(4):axs[i,j].imshow(img_list[i*4+j])axs[i,j].set_title(img_name_list[i*4+j])axs[i,j].axes.get_xaxis().set_visible(False)axs[i,j].axes.get_xaxis().set_visible(False)plt.savefig("sampling.jpg")
plt.show()

结果展示

在这里插入图片描述

降低图像空间分辨率的方法很多,本质上都是消除图像的一些细节信息.最简单的降低空间分辨率的方法就是在邻域内的平均(比如22大小邻域的光滑滤波,或者把图像分成22的小方块,每个方块求平均值);降低空间分辨率并不一定导致图像变小.
但是从信息量的角度讲,NM大小的图像包含了NM个值来表示信息,降低图像的空间分辨率以后,图像的信息量也降低了,这个时候必然不需要NM个值来表示图像的信息,所以当我们要求节约空间的时候,是可以把图像变小的.
由于图像内容的相关性,一般的N
M大小的图像都不需要NM个值来表示,所以我们有很多图像压缩算法在保真的情况下,可以极大的压缩图像数据量。

这篇关于python降低图像的空间分辨率——冈萨雷斯数字图像处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/539965

相关文章

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

Python Jupyter Notebook导包报错问题及解决

《PythonJupyterNotebook导包报错问题及解决》在conda环境中安装包后,JupyterNotebook导入时出现ImportError,可能是由于包版本不对应或版本太高,解决方... 目录问题解决方法重新安装Jupyter NoteBook 更改Kernel总结问题在conda上安装了

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

Python安装时常见报错以及解决方案

《Python安装时常见报错以及解决方案》:本文主要介绍在安装Python、配置环境变量、使用pip以及运行Python脚本时常见的错误及其解决方案,文中介绍的非常详细,需要的朋友可以参考下... 目录一、安装 python 时常见报错及解决方案(一)安装包下载失败(二)权限不足二、配置环境变量时常见报错及

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操