Leetcode 1349. 参加考试的最大学生数(Java + 按行状压暴力 + DP)

2023-12-26 06:45

本文主要是介绍Leetcode 1349. 参加考试的最大学生数(Java + 按行状压暴力 + DP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 题目
  • 思路
    • Java + 按行状压暴力 + DP:
    • 第 1 步:
    • 第 2 步:
    • 第 3 步:
    • 第 4 步:
  • 复杂度
  • Code

题目

  • Problem: 1349. 参加考试的最大学生数
  • 给你一个 m * n 的矩阵 seats 表示教室中的座位分布。如果座位是坏的(不可用),就用 ‘#’ 表示;否则,用 ‘.’ 表示。
  • 学生可以看到左侧、右侧、左上、右上这四个方向上紧邻他的学生的答卷,但是看不到直接坐在他前面或者后面的学生的答卷。请你计算并返回该考场可以容纳的同时参加考试且无法作弊的 最大 学生人数。
  • 学生必须坐在状况良好的座位上。
  • seats 只包含字符 ‘.’ 和’#’
  • m == seats.length
  • n == seats[i].length
  • 1 <= m <= 8
  • 1 <= n <= 8

思路

Java + 按行状压暴力 + DP:

第 1 步:

  • 首先思考每个好座位选或不选的 DFS 暴力求解,会超时
  • 其次分析题意可知,仅有相邻两行之间有限制,
  • 因此可以想到将行拆开,仅每一行去暴力所有可能,使用 DP 判断相邻两行的限制即可

第 2 步:

  • 每行暴力:
  • 每行遍历从 0 到 (2 ^ n) - 1 的数字 seat,seat 转化为二进制、1 代表有人,
  • isRowUsableSeat 行内满足要求:遍历每个 1 相邻左侧没有 1 且 每个 1 均是好座位,
  • 此 seat 代表该行内部满足条件,

第 3 步:

  • DP 判断两行的限制:
  • 定义状态:dp[i][seat] 代表前 i 行中,第 i 行座位为 seat 时的最大学生数
  • 初始化:dp[0][isRowUsableSeat(seat)] = countOne(seat)(seat 中 1 个个数),代表第一行没有限制
  • 状态转移方程:
    • dp[i][isRowUsableSeat(seat)] = countOne(seat) + max(isCrossUsableSeat(0, seat)?dp[i-1][0]):0 , … , isCrossUsableSeat((2 ^ n) - 1, seat)?dp[i-1][(2 ^ n) - 1]:0)
  • 其中 isCrossUsableSeat(seat1, seat2) 代表两行(seat1-上一行、seat2-下一行)是否满足要求,即 seat2 每个 1 的下标 col、在 seat1 中 col-1 与 col+1 都不存在 1

第 4 步:

  • 预处理所有 isCrossUsableSeat,
  • 由于 i 仅与 i-1 相关,因此使用滚动数组即可

复杂度

时间复杂度:

时间复杂度: O ( ( m + n ) ∗ 2 2 n ) O((m + n) * 2 ^ {2n}) O((m+n)22n)

空间复杂度:

空间复杂度: O ( n ∗ 2 2 n ) O(n * 2 ^ {2n}) O(n22n)

Code

class Solution {/*** Java + 按行状压暴力 + DP:** 第 1 步:* 首先思考每个好座位选或不选的 DFS 暴力求解,会超时* 其次分析题意可知,仅有相邻两行之间有限制,* 因此可以想到将行拆开,仅每一行去暴力所有可能,使用 DP 判断相邻两行的限制即可** 第 2 步:* 每行暴力:* 每行遍历从 0 到 (2 ^ n) - 1 的数字 seat,seat 转化为二进制、1 代表有人,* isRowUsableSeat 行内满足要求:遍历每个 1 相邻左侧没有 1 且 每个 1 均是好座位,* 此 seat 代表该行内部满足条件,** 第 3 步:* DP 判断两行的限制:* 定义状态:dp[i][seat] 代表前 i 行中,第 i 行座位为 seat 时的最大学生数* 初始化:dp[0][isRowUsableSeat(seat)] = countOne(seat)(seat 中 1 个个数),代表第一行没有限制* 状态转移方程:dp[i][isRowUsableSeat(seat)] = countOne(seat) * + max(isCrossUsableSeat(0, seat)?dp[i-1][0]):0 , ... , isCrossUsableSeat((2 ^ n) - 1, seat)?dp[i-1][(2 ^ n) - 1]:0)* 其中 isCrossUsableSeat(seat1, seat2) 代表两行(seat1-上一行、seat2-下一行)是否满足要求,即 seat2 每个 1 的下标 col、在 seat1 中 col-1 与 col+1 都不存在 1** 第 4 步:* 预处理所有 isCrossUsableSeat,* 由于 i 仅与 i-1 相关,因此使用滚动数组即可* 时间复杂度:O((m + n) * 2 ^ 2n),空间复杂度:O(n * 2 ^ 2n)**/public int maxStudents(char[][] seats) {int m = seats.length;int n = seats[0].length;int seatTotal = 1 << n;// 预处理所有 isCrossUsableSeatboolean[][] crossUsableSeat = preCrossUsableSeat(seatTotal);int[][] dp = new int[2][seatTotal];// 初始化for (int j = 0; j < seatTotal; j++) {// 第 0 行满足 isRowUsableSeatif (isRowUsableSeat(seats[0], j)) {dp[0][j] = countOne(j);}}// 状态转移方程:dp[i][isRowUsableSeat(seat)] = countOne(seat) // + max(isCrossUsableSeat(0, seat)?dp[i-1][0]):0 , ... , isCrossUsableSeat((2 ^ n) - 1, seat)?dp[i-1][(2 ^ n) - 1]:0)for (int i = 1; i < m; i++) {for (int j = 0; j < seatTotal; j++) {// 第 i 行内满足条件if (isRowUsableSeat(seats[i], j)) {int countOneJ = countOne(j);for (int k = 0; k < seatTotal; k++) {// 第 i 行与 i-1 行满足条件if (crossUsableSeat[j][k]) {dp[i & 1][j] = Math.max(dp[i & 1][j], dp[(i - 1) & 1][k] + countOneJ);}}}}}int res = 0;for (int j = 0; j < seatTotal; j++) {res = Math.max(res, dp[(m - 1) & 1][j]);}return res;}/*** 遍历每个 1:相邻左侧没有 1 且 每个 1 均是好座位*/private boolean isRowUsableSeat(char[] seats, int seat) {for (int i = 0; (1 << i) <= seat; i++) {if (((1 << i) & seat) > 0) {if (seats[i] == '#' || ((1 << i + 1) & seat) > 0) {return false;}}}return true;}/*** 预处理所有 isCrossUsableSeat,*/private boolean[][] preCrossUsableSeat(int seatTotal) {boolean[][] crossUsableSeat = new boolean[seatTotal][seatTotal];// seat2 每个 1 的下标 col、在 seat1 中 col-1 与 col+1 都不存在 1for (int seat1 = 0; seat1 < seatTotal; seat1++) {for (int seat2 = 0; seat2 < seatTotal; seat2++) {if (isCrossUsableSeat(seat1, seat2)) {crossUsableSeat[seat1][seat2] = true;}}}return crossUsableSeat;}private boolean isCrossUsableSeat(int seat1, int seat2) {for (int bitNum = (seat2 & -seat2); bitNum > 0; bitNum = (seat2 & -seat2)) {if ((bitNum != 1 && (seat1 & (bitNum >> 1)) > 0) || ((seat1 & (bitNum << 1)) > 0)) {return false;}seat2 -= bitNum;}return true;}/*** 二进制 1 的个数*/private int countOne(int seat) {int res = 0;while (seat > 0) {seat &= seat - 1;res++;}return res;}
}

这篇关于Leetcode 1349. 参加考试的最大学生数(Java + 按行状压暴力 + DP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/538444

相关文章

Java中Map的五种遍历方式实现与对比

《Java中Map的五种遍历方式实现与对比》其实Map遍历藏着多种玩法,有的优雅简洁,有的性能拉满,今天咱们盘一盘这些进阶偏基础的遍历方式,告别重复又臃肿的代码,感兴趣的小伙伴可以了解下... 目录一、先搞懂:Map遍历的核心目标二、几种遍历方式的对比1. 传统EntrySet遍历(最通用)2. Lambd

Spring Boot 中 RestTemplate 的核心用法指南

《SpringBoot中RestTemplate的核心用法指南》本文详细介绍了RestTemplate的使用,包括基础用法、进阶配置技巧、实战案例以及最佳实践建议,通过一个腾讯地图路线规划的案... 目录一、环境准备二、基础用法全解析1. GET 请求的三种姿势2. POST 请求深度实践三、进阶配置技巧1

springboot+redis实现订单过期(超时取消)功能的方法详解

《springboot+redis实现订单过期(超时取消)功能的方法详解》在SpringBoot中使用Redis实现订单过期(超时取消)功能,有多种成熟方案,本文为大家整理了几个详细方法,文中的示例代... 目录一、Redis键过期回调方案(推荐)1. 配置Redis监听器2. 监听键过期事件3. Redi

Spring Boot 处理带文件表单的方式汇总

《SpringBoot处理带文件表单的方式汇总》本文详细介绍了六种处理文件上传的方式,包括@RequestParam、@RequestPart、@ModelAttribute、@ModelAttr... 目录方式 1:@RequestParam接收文件后端代码前端代码特点方式 2:@RequestPart接

SpringBoot整合Zuul全过程

《SpringBoot整合Zuul全过程》Zuul网关是微服务架构中的重要组件,具备统一入口、鉴权校验、动态路由等功能,它通过配置文件进行灵活的路由和过滤器设置,支持Hystrix进行容错处理,还提供... 目录Zuul网关的作用Zuul网关的应用1、网关访问方式2、网关依赖注入3、网关启动器4、网关全局变

SpringBoot全局异常拦截与自定义错误页面实现过程解读

《SpringBoot全局异常拦截与自定义错误页面实现过程解读》本文介绍了SpringBoot中全局异常拦截与自定义错误页面的实现方法,包括异常的分类、SpringBoot默认异常处理机制、全局异常拦... 目录一、引言二、Spring Boot异常处理基础2.1 异常的分类2.2 Spring Boot默

基于SpringBoot实现分布式锁的三种方法

《基于SpringBoot实现分布式锁的三种方法》这篇文章主要为大家详细介绍了基于SpringBoot实现分布式锁的三种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、基于Redis原生命令实现分布式锁1. 基础版Redis分布式锁2. 可重入锁实现二、使用Redisso

SpringBoot的全局异常拦截实践过程

《SpringBoot的全局异常拦截实践过程》SpringBoot中使用@ControllerAdvice和@ExceptionHandler实现全局异常拦截,@RestControllerAdvic... 目录@RestControllerAdvice@ResponseStatus(...)@Except

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

Java 接口定义变量的示例代码

《Java接口定义变量的示例代码》文章介绍了Java接口中的变量和方法,接口中的变量必须是publicstaticfinal的,用于定义常量,而方法默认是publicabstract的,必须由实现类... 在 Java 中,接口是一种抽象类型,用于定义类必须实现的方法。接口可以包含常量和方法,但不能包含实例