基于Python的新能源汽车销量分析与预测系统

2023-12-25 23:52

本文主要是介绍基于Python的新能源汽车销量分析与预测系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        基于Python的新能源汽车销量分析与预测系统是一个使用Python编程语言和Flask框架开发的系统。它可以帮助用户分析和预测新能源汽车的销量情况。该系统使用了关系数据库进行数据存储,并使用了一些前端技术如HTML、JavaScript、jQuery、Bootstrap和Echarts框架来实现用户界面的设计和交互。

        该系统的主要功能包括:

  1. 数据采集和清洗:通过网络爬虫采集新能源汽车销售数据,并对数据进行清洗、数据库存储,以便后续分析使用。
  2. 数据可视化:将清洗后的数据以图表的形式展示,如折线图、柱状图等,帮助用户直观地了解销量情况和趋势。
  3. 数据分析:通过统计学和机器学习算法对销售数据进行分析,提取关键特征和规律,帮助用户发现影响销量的因素。
  4. 销量预测:基于历史销售数据和分析结果,采用ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等预测模型对未来销量进行预测,帮助用户做出决策和制定销售策略。

        通过该系统,用户可以方便地进行新能源汽车销量分析和预测,从而更好地了解市场需求和制定销售策略。

2.  新能源汽车销量数据采集

        本系统利用Python网络爬虫技术采集某汽车排行榜网站的历史月度销售数据:

ef factory_car_sell_count_spider():"""新能源汽车销量"""# ......# 查询数据库中最新数据的日期query_sql = "select year_month from car_info order by year_month desc limit 1"cursor.execute(query_sql)results = cursor.fetchall()if len(results) == 0:start_year_month = '201506'else:start_year_month = results[0][0]print("start_year_month:", start_year_month)base_url = 'https://xxx.xxxxx.com/ev-{}-{}-{}.html'# ......while start_year_month < cur_date:for page_i in range(1, 10):try:url = base_url.format(start_year_month, start_year_month, page_i)resp = requests.get(url, headers=headers)resp.encoding = 'utf8'soup = BeautifulSoup(resp.text, 'lxml')table = soup.select('table.xl-table-def')trs = table[0].find_all('tr')# 过滤表头for tr in trs[1:]:tds = tr.find_all('td')# 车型car_name = tds[1].text.strip()# 销量# ......factory = tds[3].text.strip()# 售价price = tds[4].text.strip()car_info = (start_year_month, car_name, factory, sell_count, price)print(car_info)factory_month_sell_counts.append(car_info)except:breaktime.sleep(1)# 下个月份start_year_month = datetime.strptime(start_year_month, '%Y%m')start_year_month = start_year_month + relativedelta(months=1)start_year_month = start_year_month.strftime('%Y%m')# 采集的数据存储到数据库中# ......

3. 新能源汽车销量分析与预测系统

3.1 系统首页与注册登录

3.2 中国汽车总体销量走势分析

3.3 不同品牌汽车销量对比分析

3.4 基于机器学习回归算法的汽车销量分析

        分别利用ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等预测模型,对2015年~2023年所有新能源汽车月度销量数据就行建模训练,并预测最新下一个月度的销量:

@api_blueprint.route('/factory_month_year_sell_count_predict/<factory>/<algo>')
def factory_month_year_sell_count_predict(factory, algo):"""汽车销量预测"""tmp = factory_month_sell_counts[factory_month_sell_counts['厂商'] == factory]tmp = tmp.drop_duplicates(subset=['时间'], keep='first')year_months = tmp['时间'].values.tolist()sell_counts = tmp['销量'].values.tolist()# 销量预测算法predict_sell_count = 0if algo == "arima":predict_sell_count = arima_model_train_eval(sell_counts)elif algo == 'tree':predict_sell_count = decision_tree_predict(sell_counts)elif algo == 'ridge':predict_sell_count = ridge_predict(sell_counts)else:raise ValueError(algo + " not supported.")# 下一个月度next_year_month = datetime.strptime(year_months[-1], '%Y%m')next_year_month = next_year_month + relativedelta(months=1)next_year_month = next_year_month.strftime('%Y%m')year_months.append(next_year_month)# 转为 int 类型predict_sell_count = int(predict_sell_count)sell_counts.append(predict_sell_count)return jsonify({'x': year_months,'y1': sell_counts,'predict_sell_count': predict_sell_count})

        切换为柱状图可视化,红色为预测的下一个月度的销量: 

4. 总结

        本项目通过网络爬虫采集新能源汽车销售数据,并对数据进行清洗、数据库存储,以便后续分析使用。将清洗后的数据以图表的形式展示,如折线图、柱状图等,帮助用户直观地了解销量情况和趋势。通过统计学和机器学习算法对销售数据进行分析,提取关键特征和规律,帮助用户发现影响销量的因素。基于历史销售数据和分析结果,采用ARIMA差分自回归移动平均算法、决策树回归和Ridge岭回归等预测模型对未来销量进行预测,帮助用户做出决策和制定销售策略。

 欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 CSDN 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

这篇关于基于Python的新能源汽车销量分析与预测系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/537415

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss