python数据分析常用图大集合

2023-12-25 17:08

本文主要是介绍python数据分析常用图大集合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、折线图
  • 二、直方图
  • 三、垂直条形图
  • 四、水平条形图
  • 五、饼图
  • 六、箱线图
  • 七、热力图
  • 八、散点图
  • 九、蜘蛛图
  • 十、二元变量分布
  • 十一、面积图
  • 十二、六边形图

以下默认所有的操作都先导入了numpy、pandas、matplotlib、seaborn

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

一、折线图

石头文学 www.10tou.com

折线图可以用来表示数据随着时间变化的趋势

x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]
  • Matplotlib
plt.plot(x, y)
plt.show()

662544-20200202224729412-1541602255.png

  • Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.lineplot(x="x", y="y", data=df)
plt.show()

662544-20200202224741426-2050469253.png

二、直方图

直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,然后在每个小区间内用矩形条(bars)展示该区间的数值

a = np.random.randn(100)
s = pd.Series(a) 
  • Matplotlib
plt.hist(s)
plt.show()

662544-20200202223635503-323966262.png

  • Seaborn
sns.distplot(s, kde=False)
plt.show()
sns.distplot(s, kde=True)
plt.show()

662544-20200202223758967-2092747424.png

662544-20200202223804250-1623565276.png

三、垂直条形图

条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。

x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5']
y = [5, 4, 8, 12, 7]
  • Matplotlib
plt.bar(x, y)
plt.show()

662544-20200202224309845-1514213472.png

  • Seaborn
plt.show()

662544-20200202224343488-919329424.png

四、水平条形图

x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5']
y = [5, 4, 8, 12, 7]
plt.barh(x, y)
plt.show()

662544-20200202232302827-1500287618.png

五、饼图

nums = [25, 37, 33, 37, 6]
labels = ['High-school','Bachelor','Master','Ph.d', 'Others']
plt.pie(x = nums, labels=labels)
plt.show()

662544-20200202223000362-1885400897.png

六、箱线图

箱线图由五个数值点组成:最大值 (max)、最小值 (min)、中位数 (median) 和上下四分位数 (Q3, Q1)。
可以帮我们分析出数据的差异性、离散程度和异常值等。

  • Matplotlib
# 生成0-1之间的10*4维度数据
data=np.random.normal(size=(10,4)) 
lables = ['A','B','C','D']
# 用Matplotlib画箱线图
plt.boxplot(data,labels=lables)
plt.show()

662544-20200202223334057-703375871.png

  • Seaborn
# 用Seaborn画箱线图
df = pd.DataFrame(data, columns=lables)
sns.boxplot(data=df)
plt.show()

662544-20200202223419661-1406299288.png

七、热力图

力图,英文叫 heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直观地知道某个位置上数值的大小。

flights = sns.load_dataset("flights")
data=flights.pivot('year','month','passengers')
sns.heatmap(data)
plt.show()

662544-20200202223958827-1899563265.png

通过 seaborn 的 heatmap 函数,我们可以观察到不同年份,不同月份的乘客数量变化情况,其中颜色越浅的代表乘客数量越多

八、散点图

散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。

N = 1000
x = np.random.randn(N)
y = np.random.randn(N)
  • Matplotlib
plt.scatter(x, y,marker='x')
plt.show()

662544-20200202224518318-191196238.png

  • Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.jointplot(x="x", y="y", data=df, kind='scatter');
plt.show()

662544-20200202224542412-2103731748.png

九、蜘蛛图

蜘蛛图是一种显示一对多关系的方法,使一个变量相对于另一个变量的显著性是清晰可见

labels=np.array([u"推进","KDA",u"生存",u"团战",u"发育",u"输出"])
stats=[83, 61, 95, 67, 76, 88]
# 画图数据准备,角度、状态值
angles=np.linspace(0, 2*np.pi, len(labels), endpoint=False)
stats=np.concatenate((stats,[stats[0]]))
angles=np.concatenate((angles,[angles[0]]))
# 用Matplotlib画蜘蛛图
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)   
ax.plot(angles, stats, 'o-', linewidth=2)
ax.fill(angles, stats, alpha=0.25)
# 设置中文字体
font = FontProperties(fname=r"/System/Library/Fonts/PingFang.ttc", size=14)  
ax.set_thetagrids(angles * 180/np.pi, labels, FontProperties=font)
plt.show()

662544-20200202223142469-1477103433.png

十、二元变量分布

二元变量分布可以看两个变量之间的关系

tips = sns.load_dataset("tips")
tips.head(10)
#散点图
sns.jointplot(x="total_bill", y="tip", data=tips, kind='scatter')
#核密度图
sns.jointplot(x="total_bill", y="tip", data=tips, kind='kde')
#Hexbin图
sns.jointplot(x="total_bill", y="tip", data=tips, kind='hex')
plt.show()

662544-20200202224912070-1441348679.png

662544-20200202224920163-1065857081.png

662544-20200202224926561-640593210.png

十一、面积图

面积图又称区域图,强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。
堆积面积图还可以显示部分与整体的关系。折线图和面积图都可以用来帮助我们对趋势进行分析,当数据集有合计关系或者你想要展示局部与整体关系的时候,使用面积图为更好的选择。

df = pd.DataFrame(
np.random.rand(10, 4), 
columns=['a', 'b', 'c', 'd'])# 堆面积图
df.plot.area()# 面积图
df.plot.area(stacked=False)

662544-20200202231126181-1003443882.png

662544-20200202231145954-2067523649.png

十二、六边形图

六边形图将空间中的点聚合成六边形,然后根据六边形内部的值为这些六边形上色。

df = pd.DataFrame(
np.random.randn(1000, 2), 
columns=['a', 'b'])
df['b'] = df['b'] + np.arange(1000)# 关键字参数gridsize;它控制x方向上的六边形数量,默认为100,较大的gridsize意味着更多,更小的bin
df.plot.hexbin(x='a', y='b', gridsize=25)

662544-20200202231527701-158600278.png

这篇关于python数据分析常用图大集合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536260

相关文章

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Java中的数组与集合基本用法详解

《Java中的数组与集合基本用法详解》本文介绍了Java数组和集合框架的基础知识,数组部分涵盖了一维、二维及多维数组的声明、初始化、访问与遍历方法,以及Arrays类的常用操作,对Java数组与集合相... 目录一、Java数组基础1.1 数组结构概述1.2 一维数组1.2.1 声明与初始化1.2.2 访问

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v