python数据分析常用图大集合

2023-12-25 17:08

本文主要是介绍python数据分析常用图大集合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 一、折线图
  • 二、直方图
  • 三、垂直条形图
  • 四、水平条形图
  • 五、饼图
  • 六、箱线图
  • 七、热力图
  • 八、散点图
  • 九、蜘蛛图
  • 十、二元变量分布
  • 十一、面积图
  • 十二、六边形图

以下默认所有的操作都先导入了numpy、pandas、matplotlib、seaborn

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

一、折线图

石头文学 www.10tou.com

折线图可以用来表示数据随着时间变化的趋势

x = [2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019]
y = [5, 3, 6, 20, 17, 16, 19, 30, 32, 35]
  • Matplotlib
plt.plot(x, y)
plt.show()

662544-20200202224729412-1541602255.png

  • Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.lineplot(x="x", y="y", data=df)
plt.show()

662544-20200202224741426-2050469253.png

二、直方图

直方图是比较常见的视图,它是把横坐标等分成了一定数量的小区间,然后在每个小区间内用矩形条(bars)展示该区间的数值

a = np.random.randn(100)
s = pd.Series(a) 
  • Matplotlib
plt.hist(s)
plt.show()

662544-20200202223635503-323966262.png

  • Seaborn
sns.distplot(s, kde=False)
plt.show()
sns.distplot(s, kde=True)
plt.show()

662544-20200202223758967-2092747424.png

662544-20200202223804250-1623565276.png

三、垂直条形图

条形图可以帮我们查看类别的特征。在条形图中,长条形的长度表示类别的频数,宽度表示类别。

x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5']
y = [5, 4, 8, 12, 7]
  • Matplotlib
plt.bar(x, y)
plt.show()

662544-20200202224309845-1514213472.png

  • Seaborn
plt.show()

662544-20200202224343488-919329424.png

四、水平条形图

x = ['Cat1', 'Cat2', 'Cat3', 'Cat4', 'Cat5']
y = [5, 4, 8, 12, 7]
plt.barh(x, y)
plt.show()

662544-20200202232302827-1500287618.png

五、饼图

nums = [25, 37, 33, 37, 6]
labels = ['High-school','Bachelor','Master','Ph.d', 'Others']
plt.pie(x = nums, labels=labels)
plt.show()

662544-20200202223000362-1885400897.png

六、箱线图

箱线图由五个数值点组成:最大值 (max)、最小值 (min)、中位数 (median) 和上下四分位数 (Q3, Q1)。
可以帮我们分析出数据的差异性、离散程度和异常值等。

  • Matplotlib
# 生成0-1之间的10*4维度数据
data=np.random.normal(size=(10,4)) 
lables = ['A','B','C','D']
# 用Matplotlib画箱线图
plt.boxplot(data,labels=lables)
plt.show()

662544-20200202223334057-703375871.png

  • Seaborn
# 用Seaborn画箱线图
df = pd.DataFrame(data, columns=lables)
sns.boxplot(data=df)
plt.show()

662544-20200202223419661-1406299288.png

七、热力图

力图,英文叫 heat map,是一种矩阵表示方法,其中矩阵中的元素值用颜色来代表,不同的颜色代表不同大小的值。通过颜色就能直观地知道某个位置上数值的大小。

flights = sns.load_dataset("flights")
data=flights.pivot('year','month','passengers')
sns.heatmap(data)
plt.show()

662544-20200202223958827-1899563265.png

通过 seaborn 的 heatmap 函数,我们可以观察到不同年份,不同月份的乘客数量变化情况,其中颜色越浅的代表乘客数量越多

八、散点图

散点图的英文叫做 scatter plot,它将两个变量的值显示在二维坐标中,非常适合展示两个变量之间的关系。

N = 1000
x = np.random.randn(N)
y = np.random.randn(N)
  • Matplotlib
plt.scatter(x, y,marker='x')
plt.show()

662544-20200202224518318-191196238.png

  • Seaborn
df = pd.DataFrame({'x': x, 'y': y})
sns.jointplot(x="x", y="y", data=df, kind='scatter');
plt.show()

662544-20200202224542412-2103731748.png

九、蜘蛛图

蜘蛛图是一种显示一对多关系的方法,使一个变量相对于另一个变量的显著性是清晰可见

labels=np.array([u"推进","KDA",u"生存",u"团战",u"发育",u"输出"])
stats=[83, 61, 95, 67, 76, 88]
# 画图数据准备,角度、状态值
angles=np.linspace(0, 2*np.pi, len(labels), endpoint=False)
stats=np.concatenate((stats,[stats[0]]))
angles=np.concatenate((angles,[angles[0]]))
# 用Matplotlib画蜘蛛图
fig = plt.figure()
ax = fig.add_subplot(111, polar=True)   
ax.plot(angles, stats, 'o-', linewidth=2)
ax.fill(angles, stats, alpha=0.25)
# 设置中文字体
font = FontProperties(fname=r"/System/Library/Fonts/PingFang.ttc", size=14)  
ax.set_thetagrids(angles * 180/np.pi, labels, FontProperties=font)
plt.show()

662544-20200202223142469-1477103433.png

十、二元变量分布

二元变量分布可以看两个变量之间的关系

tips = sns.load_dataset("tips")
tips.head(10)
#散点图
sns.jointplot(x="total_bill", y="tip", data=tips, kind='scatter')
#核密度图
sns.jointplot(x="total_bill", y="tip", data=tips, kind='kde')
#Hexbin图
sns.jointplot(x="total_bill", y="tip", data=tips, kind='hex')
plt.show()

662544-20200202224912070-1441348679.png

662544-20200202224920163-1065857081.png

662544-20200202224926561-640593210.png

十一、面积图

面积图又称区域图,强调数量随时间而变化的程度,也可用于引起人们对总值趋势的注意。
堆积面积图还可以显示部分与整体的关系。折线图和面积图都可以用来帮助我们对趋势进行分析,当数据集有合计关系或者你想要展示局部与整体关系的时候,使用面积图为更好的选择。

df = pd.DataFrame(
np.random.rand(10, 4), 
columns=['a', 'b', 'c', 'd'])# 堆面积图
df.plot.area()# 面积图
df.plot.area(stacked=False)

662544-20200202231126181-1003443882.png

662544-20200202231145954-2067523649.png

十二、六边形图

六边形图将空间中的点聚合成六边形,然后根据六边形内部的值为这些六边形上色。

df = pd.DataFrame(
np.random.randn(1000, 2), 
columns=['a', 'b'])
df['b'] = df['b'] + np.arange(1000)# 关键字参数gridsize;它控制x方向上的六边形数量,默认为100,较大的gridsize意味着更多,更小的bin
df.plot.hexbin(x='a', y='b', gridsize=25)

662544-20200202231527701-158600278.png

这篇关于python数据分析常用图大集合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/536260

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

Java中Object类的常用方法小结

《Java中Object类的常用方法小结》JavaObject类是所有类的父类,位于java.lang包中,本文为大家整理了一些Object类的常用方法,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. public boolean equals(Object obj)2. public int ha

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3