Dash中的callback的使用 多input 6

2023-12-25 11:28
文章标签 使用 input dash callback

本文主要是介绍Dash中的callback的使用 多input 6,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码说明

import plotly.express as px

mport plotly.express as px用于导入plotly.express模块并给它起一个别名px。这样在后续的代码中,你可以使用px来代替plotly.express,使代码更加简洁。

plotly.express是Plotly的一个子模块,用于快速创建交互式的、数据驱动的图表。通过使用px,你可以很方便地创建各种类型的图表,如散点图、柱状图、箱形图等。

代码:

# 导入Dash库,Dash是一个用于创建数据驱动的Web应用的Python框架。  
from dash import Dash, dcc, html, Input, Output, callback  # 导入plotly.express库,这是一个用于快速创建数据可视化图表的库。  
import plotly.express as px  # 导入pandas库,用于数据处理和分析。  
import pandas as pd  # 从网络上读取一个CSV文件到DataFrame中。这个CSV文件包含了gapminder项目中的一些全球数据。  
df = pd.read_csv('https://raw.githubusercontent.com/plotly/datasets/master/gapminderDataFiveYear.csv')  # 创建一个Dash应用实例。  
app = Dash(__name__)  # 定义应用的布局,包括一个Graph和一个Slider。  
app.layout = html.Div([  dcc.Graph(id='graph-with-slider'),  # 创建一个图形元素,其id为'graph-with-slider'。  dcc.Slider(  # 创建一个滑块元素。  df['year'].min(),  # 设置滑块的最小值为数据中'year'列的最小值。  df['year'].max(),  # 设置滑块的最大值为数据中'year'列的最大值。  step=None,  # 设置滑块的步长为无,这意味着滑块可以覆盖整个范围。  value=df['year'].min(),  # 设置滑块的初始值为数据中'year'列的最小值。  marks={str(year): str(year) for year in df['year'].unique()},  # 为滑块添加标记,标记的值为数据中'year'列的所有唯一值。  id='year-slider'  # 设置滑块的id为'year-slider'。  )  
])  # 定义一个回调函数,该函数根据滑块的值更新图形。  
@callback(  # 定义一个回调函数,它接受一个输入(滑块的当前值)并产生一个输出(更新的图形)。  Output('graph-with-slider', 'figure'),  # 设置输出的id为'graph-with-slider'的图形的figure属性。  Input('year-slider', 'value'))  # 设置输入为id为'year-slider'的滑块的value属性。  
def update_figure(selected_year):  # 定义回调函数,它接受滑块的当前值作为参数。  filtered_df = df[df.year == selected_year]  # 根据滑块的当前值筛选数据。  # 使用plotly.express创建散点图,其中x轴是每个国家的GDP per capita,y轴是人均寿命,点的大小表示人口,颜色表示国家所在的洲。  fig = px.scatter(filtered_df, x="gdpPercap", y="lifeExp", size="pop", color="continent", hover_name="country", log_x=True, size_max=55)  fig.update_layout(transition_duration=500)  # 更新布局以添加过渡效果,持续时间为500毫秒。  return fig  # 返回更新的图形。  # 如果这个脚本是作为主程序运行,则启动Dash应用。  
if __name__ == '__main__':    app.run(debug=True)  # 启动应用并启用调试模式。

在这里插入图片描述

多input

在这里插入图片描述

# 导入Dash库及其相关组件。Dash是一个用于构建分析性web应用的Python框架,
# dcc是Dash的核心组件库,html是Dash的HTML组件库。
# Input, Output, callback用于设置和处理Dash应用的交互功能。
from dash import Dash, dcc, html, Input, Output, callback
# 导入plotly.express库,并简称为px。Plotly.express是一个用于快速创建交互式图表的库。
import plotly.express as px# 导入pandas库,并简称为pd。Pandas是一个用于数据处理和分析的Python库。
import pandas as pd# 创建一个Dash应用实例
app = Dash(__name__)# 从指定的URL读取数据,并使用pandas的read_csv函数将其加载为一个DataFrame。
# 这个数据集包含了各种国家指标的数据。
df = pd.read_csv('https://plotly.github.io/datasets/country_indicators.csv')# 设置Dash应用的布局。这个布局是一个HTML的Div元素,其中包含了多个子元素。
app.layout = html.Div([# 第一行:包含两个下拉框和两个单选按钮的Div元素,用于选择x轴和y轴的指标以及轴的类型(线性或对数)html.Div([html.Div([dcc.Dropdown(  # x轴指标下拉框df['Indicator Name'].unique(),  # 下拉框的选项,从数据集中获取不重复的指标名称'Fertility rate, total (births per woman)',  # 默认选择的指标id='xaxis-column'  # 下拉框的id,用于在回调函数中识别这个组件),dcc.RadioItems(  # x轴类型单选按钮['Linear', 'Log'],  # 单选按钮的选项'Linear',  # 默认选择的选项id='xaxis-type',  # 单选按钮的idinline=True  # 单选按钮在一行内显示)], style={'width': '48%', 'display': 'inline-block'}),  # 设置这个Div的样式,宽度为48%,行内显示html.Div([  # y轴的设置与x轴类似,只是id和默认选项不同dcc.Dropdown(df['Indicator Name'].unique(),'Life expectancy at birth, total (years)',id='yaxis-column'),dcc.RadioItems(['Linear', 'Log'],'Linear',id='yaxis-type',inline=True)], style={'width': '48%', 'float': 'right', 'display': 'inline-block'})  # 这个Div浮动到右边,也是行内显示]),# 用于显示图表的Graph组件,id为'indicator-graphic',在回调函数中通过这个id来更新图表。dcc.Graph(id='indicator-graphic'),# 一个滑动条,用于选择年份。滑动条的最小值、最大值和步长分别从数据集中获取。dcc.Slider(df['Year'].min(),  # 滑动条的最小值df['Year'].max(),  # 滑动条的最大值step=None,  # 滑动条的步长,None表示自动计算一个合适的步长id='year--slider',  # 滑动条的idvalue=df['Year'].max(),  # 滑动条的默认值,设置为最大年份marks={str(year): str(year) for year in df['Year'].unique()},  # 滑动条上的标记,显示所有不重复的年份)
])# 定义一个回调函数,用于更新图表。当任何一个输入组件的值改变时,这个函数都会被调用。
@callback(Output('indicator-graphic', 'figure'),  # 输出组件及其属性,这里是图表的figure属性。# 输入组件及其属性,包括x轴和y轴指标下拉框的值、x轴和y轴类型单选按钮的值、以及滑动条的值。Input('xaxis-column', 'value'),Input('yaxis-column', 'value'),Input('xaxis-type', 'value'),Input('yaxis-type', 'value'),Input('year--slider', 'value'))  # 注意这里每个输入组件的id与前面定义的对应组件的id相同。
def update_graph(xaxis_column_name, yaxis_column_name, xaxis_type, yaxis_type, year_value):  # 回调函数的参数与输入组件的属性对应。# 根据选择的年份筛选数据。这里假设数据集中有一个'Year'列,用于记录每个数据的年份。dff = df[df['Year'] == year_value]# 根据筛选后的数据创建一个散点图。x轴和y轴的数据分别根据选择的x轴和y轴指标从数据集中获取。hover_name设置了鼠标悬停在点上时显示的信息。fig = px.scatter(x=dff[dff['Indicator Name'] == xaxis_column_name]['Value'],y=dff[dff['Indicator Name'] == yaxis_column_name]['Value'],hover_name=dff[dff['Indicator Name'] == yaxis_column_name]['Country Name'])# 更新图表的布局设置,包括边距和悬停模式等。margin设置了图表的边距;hovermode设置了鼠标悬停在图表上时的行为,这里是显示离鼠标最近的点。fig.update_layout(margin={'l': 40, 'b': 40, 't': 10, 'r': 0}, hovermode='closest')# 更新x轴的设置,包括标题和类型等。title设置了x轴的标题;type设置了x轴的类型,根据用户的选择在'linear'和'log'之间切换。注意这里使用了Python的三元表达式来简化代码。fig.update_xaxes(title=xaxis_column_name, type='linear' if xaxis_type == 'Linear' else 'log')# 更新y轴的设置,与x轴类似。注意这里y轴的标题和类型都是根据用户的选择动态设置的。fig.update_yaxes(title=yaxis_column_name, type='linear' if yaxis_type == 'Linear' else 'log')# 返回更新后的图表对象,Dash会自动将这个对象渲染到页面上对应的Graph组件中。这样用户就可以看到最新的图表了。这里利用了Python的函数返回值来实现这种自动更新的功能。return figif __name__ == '__main__':app.run(debug=True)

这篇关于Dash中的callback的使用 多input 6的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535330

相关文章

JavaScript中的reduce方法执行过程、使用场景及进阶用法

《JavaScript中的reduce方法执行过程、使用场景及进阶用法》:本文主要介绍JavaScript中的reduce方法执行过程、使用场景及进阶用法的相关资料,reduce是JavaScri... 目录1. 什么是reduce2. reduce语法2.1 语法2.2 参数说明3. reduce执行过程

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++ Primer 多维数组的使用

《C++Primer多维数组的使用》本文主要介绍了多维数组在C++语言中的定义、初始化、下标引用以及使用范围for语句处理多维数组的方法,具有一定的参考价值,感兴趣的可以了解一下... 目录多维数组多维数组的初始化多维数组的下标引用使用范围for语句处理多维数组指针和多维数组多维数组严格来说,C++语言没

在 Spring Boot 中使用 @Autowired和 @Bean注解的示例详解

《在SpringBoot中使用@Autowired和@Bean注解的示例详解》本文通过一个示例演示了如何在SpringBoot中使用@Autowired和@Bean注解进行依赖注入和Bean... 目录在 Spring Boot 中使用 @Autowired 和 @Bean 注解示例背景1. 定义 Stud

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

使用Python快速实现链接转word文档

《使用Python快速实现链接转word文档》这篇文章主要为大家详细介绍了如何使用Python快速实现链接转word文档功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 演示代码展示from newspaper import Articlefrom docx import

oracle DBMS_SQL.PARSE的使用方法和示例

《oracleDBMS_SQL.PARSE的使用方法和示例》DBMS_SQL是Oracle数据库中的一个强大包,用于动态构建和执行SQL语句,DBMS_SQL.PARSE过程解析SQL语句或PL/S... 目录语法示例注意事项DBMS_SQL 是 oracle 数据库中的一个强大包,它允许动态地构建和执行

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

Python itertools中accumulate函数用法及使用运用详细讲解

《Pythonitertools中accumulate函数用法及使用运用详细讲解》:本文主要介绍Python的itertools库中的accumulate函数,该函数可以计算累积和或通过指定函数... 目录1.1前言:1.2定义:1.3衍生用法:1.3Leetcode的实际运用:总结 1.1前言:本文将详