格密码基础:q-ary格

2023-12-25 10:20
文章标签 基础 密码 ary

本文主要是介绍格密码基础:q-ary格,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一. 格密码的重要性

二. 格密码基础

2.1 格点的另一种理解方式

三. q-ary格

3.1 q-ary垂直格

3.2 q-ary格

3.3 二者结合

四. 论文中的q-ary格

4.1 定理1

4.2 定理2

4.3 定理3


一. 格密码的重要性

格密码的基础是研究格点上的困难问题,这种格点使用抽象代数的观点则是R^n上的子群。格密码近些年非常火热,主要由于以下几点:

  1. 抗量子攻击。基于传统数论的公钥密码系统是无法抵抗量子攻击的,这也是格密码最大的优势;
  2. 效率很高,可以平行操作。这个其实不能一概而论,得看实际情况。但目前我们常见的格密码方案效率都挺高的;
  3. 可实现最坏情况与平均情况之前的归约(worst case to average case);
  4. 利用格密码相关理论可解决以前比较棘手的困难问题,这个地方的困难问题,指的是密码界常说的open question;

密码学的基础是LWE(learning with errors)和SIS(short integer solution)问题,当然也包括这两个问题的环版本。通常Ring版本的计算效率会更高。这两个问题可以实现可证明安全,由此让密码学家前仆后继。

二. 格密码基础

2.1 格点的另一种理解方式

有关格密码基础可以参看我之前的博客。今天,可以从抽象代数的角度理解格点:m维的格\Lambda可以看成R^m上的离散加法子群

其中,格的秩与矩阵的秩k类似,满足k\leq m(在非满秩情况下,格的维度比最大的维度要小)。由此,给定格基B=\lbrace b_1,\cdots,b_k\rbrace,该格基由k个线性独立的m维列向量组成,对该格基进行整数倍线性组合即可形成格,如下:

\Lambda=\lbrace Bz:z\in Z^k\rbrace

当然,正常情况下,研究格密码的论文大多是满秩格,也就是常说的\Lambda\subset Z^mk=m(如果涉及格上高斯采样,有可能会出现非满秩格)。

2.2 对偶格

格形成的整个空间,通常叫做span(\Lambda)。如果从格上取一个格点x\in \Lambda,接着再取一个向量点v\in span(\Lambda),满足如下要求的点,称之为对偶格\Lambda^*

\langle v,x\rangle\in Z

这个是从格点的角度看对偶格,还可以从格基的角度出发。

如果格非满秩,原始格\Lambda的格基为B,那么对偶格的格基如下:

B^*=B(B^tB)^{-1}

大家看这个式子可能有点复杂,其实就是伪逆。在满秩格下,对偶格的格基就是先求逆再转置,如下:

B^*=B^{-t}

三. q-ary格

其实准确来讲,应该分为q-ary垂直格q-ary格

很多格密码的方案都是建立在q-ary格上的,之所以起这个名字是因为qZ^m一定是q-ary垂直格子格

3.1 q-ary垂直格

我们先来看一个矩阵。对于正整数n和q,选出A\in Z_q^{n\times m}(密码学通常要求该矩阵随机取),这个矩阵是公开的,如果有一个向量z乘以该矩阵为0向量,那么把满足此条件的向量z全部都组合在一起,就称之为q-ary垂直格,如下:

\Lambda^\bot(A)=\lbrace z\in Z^m:Az=0 \quad mod\ q\rbrace

很明显可以得出qZ^m一定是该格的子格。

3.2 q-ary格

同样,先选出一个矩阵A\in Z_q^{n\times m},接着遍历向量s\in Z^n_q,将两者相乘,得到新的向量z,即可形成q-ary格,如下:

\Lambda(A^t)=\lbrace z\in Z^m:\exists s\in Z_q^n\ s.t.\ z=A^ts\quad mod \ q\rbrace

3.3 二者结合

实际上,q-ary格和q-ary垂直格互为q倍的对偶格,如下:

q\cdot \Lambda^\bot(A)^*=\Lambda(A^t)

在这里就不证明了。

当然,部分论文类推,也会出现“1-ary”格,也就是:

\frac{1}{q}\Lambda(A^t)=\Lambda^\bot(A)^*

此格既包含整数,又包含小数,可得Z^m为其子格。

如果我们将Az=0中的0改为任意向量u\in Z_q^n,就会出现平移格或者叫陪集格(coset),如下:

\Lambda_u^\bot(A)=\lbrace z\in Z^m:Az=u \quad mod\ q\rbrace

四. 论文中的q-ary格

密码学三大会中经常会出现q-ary格,这里梳理一些常用的相关结论。

随机取一个A\in Z_q^{n\times m},假定q-ary垂直格\Lambda^\bot(A)的某个格基为S\in Z^{m\times m}

4.1 定理1

对任意幺模矩阵T\in Z^{m\times m},都有:

T\cdot \Lambda^\bot(A)=\Lambda^\bot(A\cdot T^{-1})

理解:该定理描述了幺模矩阵与q-ary垂直格的关系。左边T\cdot \Lambda^\bot(A)代表对每个q-ary垂直格进行幺模矩阵变换,该新格的格基为T\cdot S。右边代表对矩阵A的变换,看q-ary格的原始定理可直接列出。

4.2 定理2

对任意可逆的方阵H\in Z_q^{n\times n},q-ary垂直格都满足:

\Lambda^\bot(H\cdot A)=\Lambda^\bot(A)

理解:矩阵可逆的话,HAz=0可直接变为Az=0,与原来的q-ary垂直格等效。(注意矩阵H的顺序)

4.3 定理3

设定矩阵A\in Z_q^{n\times m}的列秩大于等于n,换句话说也就是矩阵A的列向量可构成Z_q^n。接着随机取矩阵A'\in Z_q^{n\times m'}以及矩阵W\in Z^{m\times m'},满足如下:

AW=-A'\quad mod\ q

接着我们可以借助此性质对q-ary垂直格的矩阵A进行扩展,形成新的q-ary垂直格\Lambda^\bot ([A'|A]),该q-ary垂直格的格基为:

S'=\left[ \begin{array}{cc}I&0\\W&S \end{array} \right]

另外,我们知道格基是可以进行正交化的。其实S'正交化后的矩阵如下:

\tilde S'=\left[ \begin{array}{cc}I&0\\0&\tilde S \end{array} \right]

通过矩阵的表达形式不难看出,该矩阵的模长与原始格基S正交化的模长相等,也就是:

||\tilde S'||=||\tilde S||

这个定理的证明需要用到很多线性代数的基础,如果有人感兴趣,后期再补上吧。

这篇关于格密码基础:q-ary格的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/535166

相关文章

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

SpringSecurity 认证、注销、权限控制功能(注销、记住密码、自定义登入页)

《SpringSecurity认证、注销、权限控制功能(注销、记住密码、自定义登入页)》SpringSecurity是一个强大的Java框架,用于保护应用程序的安全性,它提供了一套全面的安全解决方案... 目录简介认识Spring Security“认证”(Authentication)“授权” (Auth

Oracle登录时忘记用户名或密码该如何解决

《Oracle登录时忘记用户名或密码该如何解决》:本文主要介绍如何在Oracle12c中忘记用户名和密码时找回或重置用户账户信息,文中通过代码介绍的非常详细,对同样遇到这个问题的同学具有一定的参... 目录一、忘记账户:二、忘记密码:三、详细情况情况 1:1.1. 登录到数据库1.2. 查看当前用户信息1.

SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)

《SpringBoot使用Jasypt对YML文件配置内容加密的方法(数据库密码加密)》本文介绍了如何在SpringBoot项目中使用Jasypt对application.yml文件中的敏感信息(如数... 目录SpringBoot使用Jasypt对YML文件配置内容进行加密(例:数据库密码加密)前言一、J

MySQL9.0默认路径安装下重置root密码

《MySQL9.0默认路径安装下重置root密码》本文主要介绍了MySQL9.0默认路径安装下重置root密码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录问题描述环境描述解决方法正常模式下修改密码报错原因问题描述mysqlChina编程采用默认安装路径,

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

MySQL修改密码的四种实现方式

《MySQL修改密码的四种实现方式》文章主要介绍了如何使用命令行工具修改MySQL密码,包括使用`setpassword`命令和`mysqladmin`命令,此外,还详细描述了忘记密码时的处理方法,包... 目录mysql修改密码四种方式一、set password命令二、使用mysqladmin三、修改u

电脑密码怎么设置? 一文读懂电脑密码的详细指南

《电脑密码怎么设置?一文读懂电脑密码的详细指南》为了保护个人隐私和数据安全,设置电脑密码显得尤为重要,那么,如何在电脑上设置密码呢?详细请看下文介绍... 设置电脑密码是保护个人隐私、数据安全以及系统安全的重要措施,下面以Windows 11系统为例,跟大家分享一下设置电脑密码的具体办php法。Windo

数据库oracle用户密码过期查询及解决方案

《数据库oracle用户密码过期查询及解决方案》:本文主要介绍如何处理ORACLE数据库用户密码过期和修改密码期限的问题,包括创建用户、赋予权限、修改密码、解锁用户和设置密码期限,文中通过代码介绍... 目录前言一、创建用户、赋予权限、修改密码、解锁用户和设置期限二、查询用户密码期限和过期后的修改1.查询用