Flink系列之:Checkpoints 与 Savepoints

2023-12-24 19:30

本文主要是介绍Flink系列之:Checkpoints 与 Savepoints,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink系列之:Checkpoints 与 Savepoints

  • 一、概述
  • 二、功能和限制

一、概述

从概念上讲,Flink 的 savepoints 与 checkpoints 的不同之处类似于传统数据库系统中的备份与恢复日志之间的差异。

Checkpoints 的主要目的是为意外失败的作业提供恢复机制。 Checkpoint 的生命周期 由 Flink 管理, 即 Flink 创建,管理和删除 checkpoint - 无需用户交互。 由于 checkpoint 被经常触发,且被用于作业恢复,所以 Checkpoint 的实现有两个设计目标:i)轻量级创建和 ii)尽可能快地恢复。 可能会利用某些特定的属性来达到这个目标,例如, 作业的代码在执行尝试时不会改变。

在用户终止作业后,会自动删除 Checkpoint(除非明确配置为保留的 Checkpoint)。

Checkpoint 以状态后端特定的(原生的)数据格式存储(有些状态后端可能是增量的)

尽管 savepoints 在内部使用与 checkpoints 相同的机制创建,但它们在概念上有所不同,并且生成和恢复的成本可能会更高一些。Savepoints的设计更侧重于可移植性和操作灵活性,尤其是在 job 变更方面。Savepoint 的用例是针对计划中的、手动的运维。例如,可能是更新你的 Flink 版本,更改你的作业图等等。

Savepoint 仅由用户创建、拥有和删除。这意味着 Flink 在作业终止后和恢复后都不会删除 savepoint。

Savepoint 以状态后端独立的(标准的)数据格式存储(注意:从 Flink 1.15 开始,savepoint 也可以以后端特定的原生格式存储,这种格式创建和恢复速度更快,但有一些限制)。

二、功能和限制

下表概述了各种类型的 savepoint 和 checkpoint 的功能和限制。

✓ - Flink 完全支持这种类型的快照
x - Flink 不支持这种类型的快照
! - 虽然这些操作目前有效,但 Flink 并未正式保证对它们的支持,因此它们存在一定程度的风险

在这里插入图片描述

  • 更换状态后端 - 配置与创建快照时使用的不同的状态后端。
  • State Processor API (写) - 通过 State Processor API 创建这种类型的新快照的能力。
  • State Processor API (读) - 通过 State Processor API 从该类型的现有快照中读取状态的能力。
  • 自包含和可移动 - 快照目录包含从该快照恢复所需的所有内容,并且不依赖于其他快照,这意味着如果需要的话,它可以轻松移动到另一个地方。
  • Schema 变更 - 如果使用支持 Schema 变更的序列化器(例如 POJO 和 Avro 类型),则可以更改状态数据类型。
  • 任意 job 升级 - 即使现有算子的 partitioning 类型(rescale, rebalance, map, 等)或运行中数据类型已经更改,也可以从该快照恢复。
  • 非任意 job 升级 - 如果作业图拓扑和运行中数据类型保持不变,则可以使用变更后的 operator 恢复快照。
  • Flink 小版本升级 - 从更旧的 Flink 小版本创建的快照恢复(1.x → 1.y)。
  • Flink bug/patch 版本升级 - 从更旧的 Flink 补丁版本创建的快照恢复(1.14.x → 1.14.y)。
  • 扩缩容 - 使用与快照制作时不同的并发度从该快照恢复。

这篇关于Flink系列之:Checkpoints 与 Savepoints的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532874

相关文章

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

GPT系列之:GPT-1,GPT-2,GPT-3详细解读

一、GPT1 论文:Improving Language Understanding by Generative Pre-Training 链接:https://cdn.openai.com/research-covers/languageunsupervised/language_understanding_paper.pdf 启发点:生成loss和微调loss同时作用,让下游任务来适应预训

Java基础回顾系列-第七天-高级编程之IO

Java基础回顾系列-第七天-高级编程之IO 文件操作字节流与字符流OutputStream字节输出流FileOutputStream InputStream字节输入流FileInputStream Writer字符输出流FileWriter Reader字符输入流字节流与字符流的区别转换流InputStreamReaderOutputStreamWriter 文件复制 字符编码内存操作流(

Java基础回顾系列-第五天-高级编程之API类库

Java基础回顾系列-第五天-高级编程之API类库 Java基础类库StringBufferStringBuilderStringCharSequence接口AutoCloseable接口RuntimeSystemCleaner对象克隆 数字操作类Math数学计算类Random随机数生成类BigInteger/BigDecimal大数字操作类 日期操作类DateSimpleDateForma

Java基础回顾系列-第三天-Lambda表达式

Java基础回顾系列-第三天-Lambda表达式 Lambda表达式方法引用引用静态方法引用实例化对象的方法引用特定类型的方法引用构造方法 内建函数式接口Function基础接口DoubleToIntFunction 类型转换接口Consumer消费型函数式接口Supplier供给型函数式接口Predicate断言型函数式接口 Stream API 该篇博文需重点了解:内建函数式

Java基础回顾系列-第二天-面向对象编程

面向对象编程 Java类核心开发结构面向对象封装继承多态 抽象类abstract接口interface抽象类与接口的区别深入分析类与对象内存分析 继承extends重写(Override)与重载(Overload)重写(Override)重载(Overload)重写与重载之间的区别总结 this关键字static关键字static变量static方法static代码块 代码块String类特

Java基础回顾系列-第六天-Java集合

Java基础回顾系列-第六天-Java集合 集合概述数组的弊端集合框架的优点Java集合关系图集合框架体系图java.util.Collection接口 List集合java.util.List接口java.util.ArrayListjava.util.LinkedListjava.util.Vector Set集合java.util.Set接口java.util.HashSetjava