关键点检测 HRNet网络详解笔记

2023-12-24 19:20

本文主要是介绍关键点检测 HRNet网络详解笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

关键点检测 HRNet网络详解笔记

  • 0、COCO数据集百度云下载地址
  • 1、背景介绍
  • 2、HRNet网络结构
  • 3、预测结果(heatmap)的可视化
  • 3、COCO数据集中标注的17个关键点
  • 4、损失的计算
  • 5、评价准则
  • 6、数据增强
  • 7、模型训练

论文名称: Deep High-Resolution Representation Learning for Human Pose Estimation
论文下载地址:https://arxiv.org/abs/1902.09212

0、COCO数据集百度云下载地址

百度云链接: https://pan.baidu.com/s/1U3pPJ5nDluGdCtYi0njejg
提取码: x3qk 复制这段内容后打开百度网盘手机App,操作更方便哦

1、背景介绍

这篇文章是由中国科学技术大学和亚洲微软研究院在2019年共同发表的。这篇文章中的HRNet(High-Resolution Net)是针对2D人体姿态估计(Human Pose Estimation或Keypoint Detection)任务提出的,并且该网络主要是针对单一个体的姿态评估(即输入网络的图像中应该只有一个人体目标)。人体姿态估计在现今的应用场景也比较多,比如说人体行为动作识别,人机交互(比如人作出某种动作可以触发系统执行某些任务),动画制作(比如根据人体的关键点信息生成对应卡通人物的动作)等等。
在这里插入图片描述
在这里插入图片描述

2、HRNet网络结构

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# Stage1
downsample = nn.Sequential(nn.Conv2d(64, 256, kernel_size=1, stride=1, bias=False),nn.BatchNorm2d(256, momentum=BN_MOMENTUM)
)
self.layer1 = nn.Sequential(Bottleneck(64, 64, downsample=downsample),Bottleneck(256, 64),Bottleneck(256, 64),Bottleneck(256, 64)
)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、预测结果(heatmap)的可视化

在这里插入图片描述
在这里插入图片描述
但在原论文中,对于每个关键点并不是直接取score最大的位置(如果为了方便直接取其实也没太大影响)。在原论文的4.1章节中有提到:
光看文字其实还是不太明白,下面是源码中对应的实现,其中coords是每个关键点对应预测score最大的位置:

for n in range(coords.shape[0]):for p in range(coords.shape[1]):hm = batch_heatmaps[n][p]px = int(math.floor(coords[n][p][0] + 0.5))py = int(math.floor(coords[n][p][1] + 0.5))if 1 < px < heatmap_width-1 and 1 < py < heatmap_height-1:diff = np.array([hm[py][px+1] - hm[py][px-1],hm[py+1][px]-hm[py-1][px]])coords[n][p] += np.sign(diff) * .25

在这里插入图片描述
在这里插入图片描述

3、COCO数据集中标注的17个关键点

"kps": ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]

最后把每个关键点绘制在原图上,就得到如下图所示的结果。
在这里插入图片描述

4、损失的计算

在论文第3章Heatmap estimation中作者说训练采用的损失就是均方误差Mean Squared Error
在这里插入图片描述
在这里插入图片描述

"kps": ["nose","left_eye","right_eye","left_ear","right_ear","left_shoulder","right_shoulder","left_elbow","right_elbow","left_wrist","right_wrist","left_hip","right_hip","left_knee","right_knee","left_ankle","right_ankle"]
"kps_weights": [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5, 1.0, 1.0, 1.2, 1.2, 1.5, 1.5]

5、评价准则

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6、数据增强

在这里插入图片描述
注意输入图片比例
在这里插入图片描述

7、模型训练

在这里插入图片描述
多GPU训练指令:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --use_env  train_multi_GPU.py

这篇关于关键点检测 HRNet网络详解笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/532846

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

JavaScript中的isTrusted属性及其应用场景详解

《JavaScript中的isTrusted属性及其应用场景详解》在现代Web开发中,JavaScript是构建交互式应用的核心语言,随着前端技术的不断发展,开发者需要处理越来越多的复杂场景,例如事件... 目录引言一、问题背景二、isTrusted 属性的来源与作用1. isTrusted 的定义2. 为

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

详解如何在React中执行条件渲染

《详解如何在React中执行条件渲染》在现代Web开发中,React作为一种流行的JavaScript库,为开发者提供了一种高效构建用户界面的方式,条件渲染是React中的一个关键概念,本文将深入探讨... 目录引言什么是条件渲染?基础示例使用逻辑与运算符(&&)使用条件语句列表中的条件渲染总结引言在现代

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

SQL注入漏洞扫描之sqlmap详解

《SQL注入漏洞扫描之sqlmap详解》SQLMap是一款自动执行SQL注入的审计工具,支持多种SQL注入技术,包括布尔型盲注、时间型盲注、报错型注入、联合查询注入和堆叠查询注入... 目录what支持类型how---less-1为例1.检测网站是否存在sql注入漏洞的注入点2.列举可用数据库3.列举数据库

Linux之软件包管理器yum详解

《Linux之软件包管理器yum详解》文章介绍了现代类Unix操作系统中软件包管理和包存储库的工作原理,以及如何使用包管理器如yum来安装、更新和卸载软件,文章还介绍了如何配置yum源,更新系统软件包... 目录软件包yumyum语法yum常用命令yum源配置文件介绍更新yum源查看已经安装软件的方法总结软

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

Java访问修饰符public、private、protected及默认访问权限详解

《Java访问修饰符public、private、protected及默认访问权限详解》:本文主要介绍Java访问修饰符public、private、protected及默认访问权限的相关资料,每... 目录前言1. public 访问修饰符特点:示例:适用场景:2. private 访问修饰符特点:示例: